An Intensive Cultural Resources Survey
of the Proposed
Martin Luther King Park Roadway Project
San Antonio, Bexar County, Texas
AN INTENSIVE CULTURAL RESOURCES SURVEY OF THE
PROPOSED MARTIN LUTHER KING PARK ROADWAY PROJECT
SAN ANTONIO, BEXAR COUNTY, TEXAS

TEXAS ANTIQUITIES PERMIT NO. 7242

Prepared for:

City of San Antonio

Prepared by:

Atkins
6504 Bridge Point Parkway
Suite 200
Austin, Texas 78730

Principal Investigator
Mary Jo Galindo

Authors:
Justin O. Rains
Mary Jo Galindo

December 2015
Abstract

Atkins North America, Inc. (Atkins) conducted an intensive cultural resources survey within a 0.42-hectare (ha) (1.04-acre) project area for the proposed construction of a second entrance to Martin Luther King Park from West Hein Road for both vehicles and pedestrians. The project is situated in eastern San Antonio, Bexar County, Texas. The area of potential effects (APE) includes both the roadway and the pedestrian trail. The roadway portion is maximally 350.52 meters (m) (1,150 feet [ft]) in length by 7.26 m (25 ft) in width, encompassing approximately 0.30 ha (0.74 acre), and the pedestrian trail is maximally 396.24 m (1,300 ft) long and approximately 3.81 m (12.5 ft) wide, or about 0.12 ha (0.30 acre). The depth of impacts has not yet been established, but road projects typically disturb 1.22 to 1.52 m (4 to 5 ft) throughout, with deeper impacts possible for the installation of a culvert system at the creek crossing. The current work was conducted on behalf of the City of San Antonio, as part of their compliance with the Antiquities Code of Texas under Permit Number 7242.

The investigations included a background literature and records review, an intensive pedestrian survey with shovel testing, and mechanical trenching. The background review revealed that the project area has not been previously surveyed and no recorded sites are within or adjacent to it. Additionally, no previously recorded sites, historical markers, or cemeteries are located within a 1.0-kilometer (km) (0.62-mile) radius with the exception of three previously conducted surveys. The prominent Dittmar family likely owned land in the vicinity of the project area, as noted on an historical map; however, it is doubtful that they occupied the residence and well complex mapped nearby. The land probably represents rural investment property for the family. Although historic debris including bricks manufactured between 1903 and 1931 was found in the area, the material appears to have been moved from its original location and dumped at the APE. As such, the construction debris lacks integrity and was not defined as an archaeological site or an isolated find.

Overall, the intensive pedestrian survey revealed that the proposed APE is in a riverine setting with large, mature trees, and high grasses. The left (east) bank of Salado Creek is a rocky, limestone bluff with minimal to no soil deposition; however, the alluvial soils on the right (west) bank were deep. In the uplands near Martin Luther King Drive, bedrock marl was frequently encountered around 30 centimeters (cm) below the surface, and modern construction debris and trash was noted on the surface. A total of six shovel tests and three mechanical (backhoe) trenches was excavated throughout the APE. Besides the historic brick and modern trash, no cultural material was observed on the surface or in any subsurface investigation.

In accordance with 33 Code of Federal Regulations (CFR) 800.4, Atkins has made a reasonable and good faith effort to identify cultural resources within the APE. As no properties were identified that meet the criteria for listing in the NRHP according to 36 CFR 60.4, or for designation as a State...
Antiquities Landmark according to 13 Texas Administrative Code 26.12, Atkins recommends no further cultural resource investigations within the APE.
Contents

- **Abstract** ... ii
- **List of Figures** .. v
- **List of Tables** ... v
- **Acknowledgments** .. vi

I. **INTRODUCTION** .. 1

II. **RESEARCH GOALS AND METHODS** .. 3
 - SHOVEL TESTING ... 4
 - BACKHOE TRENCHING .. 4

III. **PROJECT SETTING** ... 6
 - GEOLOGY .. 6
 - SOILS .. 6
 - Rock outcrop-Olmos complex ... 6
 - Loire .. 6
 - Patrick ... 6
 - CULTURAL BACKGROUND .. 7
 - Paleoindian Period ... 7
 - Archaic Period ... 7
 - Late Prehistoric Period ... 8

IV. **RESULTS** ... 9
 - RECORD SEARCH .. 9
 - CULTURAL RESOURCE SURVEY .. 11

V. **SUMMARY AND RECOMMENDATIONS** ... 22

VI. **REFERENCES** .. 23
List of Figures

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Acknowledgements

Dr. Mary Jo Galindo served as Principal Investigator and Project Manager for the duration of the fieldwork and reporting, overseeing overall logistics and organization, and managing reporting and agency consultation. Mary Jo Galindo and Justin O. Rains conducted the field work on April 6 and 7, 2015, and both contributed to the report. Myron Friedel produced all field and report maps for the project. Christine Vidrick formatted the report. The permit was transferred to Maggie McClain, who completed curation.
I. INTRODUCTION

Atkins North America Inc. (Atkins) conducted an intensive cultural resources survey for the proposed construction of a second entrance to Martin Luther King Park for both vehicles and pedestrians crossing Salado Creek (Figure 1). Located in eastern San Antonio, Texas, the southern boundary of the project area abuts the intersection of Martin Luther King Drive and West Hein Road. The work was conducted on behalf of the City of San Antonio (COSA), as part of their compliance with the Antiquities Code of Texas (ACT) under Permit Number 7242.

The area of potential effects (APE) includes both the roadway and the pedestrian trail. The roadway portion is maximally 350.52 meters (m) (1,150 feet [ft]) in length by 7.26 m (25 ft) in width, encompassing approximately 0.30 hectare (ha) (0.74 acre), and the pedestrian trail is maximally 396.24 m (1,300 ft.) long and approximately 3.81 m (12.5 ft) wide, or about 0.12 ha (0.30 acre). The depth of impacts has not yet been established, but road projects typically disturb 1.22 to 1.52 m (4 to 5 ft) throughout, with deeper impacts possible for the installation of a culvert system at the Salado Creek crossing.

The investigations, conducted on April 6 and 7, 2015, consisted of an intensive archaeological survey with shovel testing throughout the proposed APE and backhoe trenching in the vicinity of Salado Creek. All investigations were conducted in accordance with Texas Historical Commission (THC) and Council of Texas Archeologists (CTA) standards, as well as the guidelines provided in Section 106 of the National Historic Preservation Act (NHPA). Dr. Mary Jo Galindo served as Principal Investigator and conducted the fieldwork along with Justin O. Rains.

To evaluate the impact of the proposed project on cultural resources, the entire project area was subjected to a pedestrian inspection, and six shovel tests were excavated in accordance with the state survey standards that require a minimum of three shovel tests every 1 acre (0.40 ha) for a project area that is up to 2 acres (0.81 ha) in size. In addition, three backhoe trenches were excavated west of Salado Creek to locate any intact, deeply buried cultural deposits within flood-event alluvium. Trench excavations were confined to the west side of Salado Creek because shallow soils were encountered east and southeast of the creek crossing. Additionally, the heavily wooded and sloping terrain was not accessible to the backhoe.
II. RESEARCH GOALS AND METHODS

The primary objectives of the survey were to (1) locate any cultural resources within the surveyed portions of the project area; (2) assess their potential for designation as a State Antiquities Landmark (SAL) and for inclusion in the National Register of Historic Places (NRHP); and (3) assess the effect of the proposed project and provide site-specific recommendations for mitigation of adverse impact to any SAL- or NRHP-eligible properties.

The methods undertaken to accomplish the research goals included a search of archival records to locate previously recorded sites, SAL- or NRHP-listed or -eligible sites, and potential site locations in the local area; followed by a 100-percent survey of the APE through a pedestrian surface inspection, shovel testing, and backhoe trenching.

Atkins archaeologists conducted a cultural resources background review of the area within a 1-kilometer (km) radius of the project area. Research of available records was conducted at the Texas Archeological Research Laboratory (TARL) with the purpose of determining the location of previously recorded archaeological sites within the proposed review area. The THC’s Texas Archeological Sites Atlas Online (Atlas) files were used to identify NRHP-listed properties and sites, NRHP districts, cemeteries (including historic Texas cemeteries), Official Texas Historical Markers (OTHMs, including Recorded Texas Historic Landmarks), State Antiquities Landmarks (SALs), as well as any other potential cultural resources such as National Historic Landmarks (NHLs), National Monuments, National Memorials, National Historic Sites, and National Historical Parks to ensure the completeness of the study. As a secondary source of NRHP properties and NHLs, the National Park Service’s (NPS) NRHP database and GIS Spatial Data as well as the NHL Program were consulted. The NPS Geographic Resources Program National Historic Trails Map Viewer was used to identify National Historic Trails (NHT). Supplementary to the NPS Trail Map Viewer, the El Camino Real de los Tejas Comprehensive Management Plan/Environmental Assessment Maps provided additional information about the El Camino Real de los Tejas NHT. Finally, COSA’s Historic Landmark Sites and Historic Districts GeoDatabase was consulted, along with aerial photographs, Bureau of Economic Geology (BEG) maps, and the Natural Resources Conservation Services’ (NRCS) Web Soil Survey.

The intensive archaeological field survey of the APE was to be of sufficient intensity to determine the nature, extent, and, if possible, significance of any cultural resources located within the project survey areas. The survey met all Texas minimum archaeological survey standards for such projects, with any exceptions thoroughly documented. The archaeological field crews judgmentally employed shovel testing to probe for subsurface cultural materials, and visually inspected the ground surface and available cut bank exposures. The frequency and intensity of the shovel testing regime was keyed to the level of disturbance of the proposed project area and the nature of the soils, geology, and topography. The field investigation included shovel tests and backhoe trenches as needed to provide linear survey-level coverage according to State of Texas and CTA standards.
SHOVEL TESTING

Shovel tests consisted of excavating in 10-cm arbitrary levels to a 1-m (39.37-inch) depth or to pre-Holocene deposits or bedrock, whichever was encountered first, and screening the matrix through 0.64-cm (¼-inch) mesh, unless it was dominated by clay; clay soils were hand sorted and visually inspected for the presence of cultural materials. Each shovel test location was plotted using a submeter GPS receiver, and each test was recorded on appropriate project field forms. Texas survey standards require three shovel tests every 1 acre for a project area that is up to 2 acres in size, or six in this case. Shovel tests were typically excavated at 100-m intervals along transects that were spaced 30 m apart. Shovel testing frequency fluctuated depending on the nature of the disturbances, soils, topography, or proximity of previously recorded cultural resources. Any areas determined in the field to be sufficiently deflated, disturbed and/or contaminated as to not require shovel testing was documented and the reason for not conducting shovel tests in that area explained in the report.

BACKHOE TRENCHING

As the project area encompasses a topographic setting (i.e., Salado Creek) that has the potential for deeply buried archaeological sites, backhoe trenches were excavated to reach these deposits. Generally, the trench investigations are placed in each quadrant of the creek crossing, approximately 30 to 100 m (98.43 to 328.10 ft) apart, with tighter intervals if necessary. However, in this case, deep soils were only encountered to the west of the creek crossing. Trench placement was guided by the location of buried utilities, the location of any impacted areas, and the preservation potential for archaeological sites. Backhoe trenches were excavated to a depth sufficient to determine the presence/absence of buried cultural materials and to allow the complete recording of all features and geomorphic information to depths of project impacts. Generally, trenches were a maximum 1.5 m (5 ft) deep, 5 m (16.4 ft) in length, and 1 m (3.3 ft) wide. All trenching was monitored by an experienced archaeologist while excavations were underway. Stratigraphic soils descriptions were recorded and photo-documented for each trench by an experienced archaeologist. Any features encountered during trenching were to be mapped and photographed.

Safety is always a primary concern of Atkins when conducting trenching, particularly in deep deposits. Prior to investigations, Atkins performed a One-Call (Texas 811) to verify there were no existing utilities within the proposed excavation area. The One-Call notification required a 48-hour notice prior to any excavations within the project area to properly mark and note any existing utilities. All work was performed in accordance with Occupational Safety and Health Administration (OSHA) (29 Code of Federal Regulations [CFR] Part 1926) and the Texas Trench Safety legislation (Section 756.021 through 756.023 of the Texas Health and Safety Code). Appropriate measures were to be taken for any trenches that exceeded 2 m (6.56 ft) in depth, utilizing shoring or the stepping back of sidewalls to ensure that all OSHA protocols are followed. The entire process was thoroughly photographed. All trenches were backfilled and leveled upon completion of excavation and recording.
During the survey, all located cultural resources were to be fully defined within the project area. Field crews would have explored any archaeological sites encountered during the investigations to the maximum extent possible and with consideration to land access constraints. Sites would have been defined by a minimum of six shovel tests except in areas where ground surface visibility was greater than 30 percent or where precluded by soil conditions, disturbances, or project boundaries. Shovel tests were to be conducted along radials from the site center at intervals not to exceed 15 m with site boundaries determined by two negative shovel tests at the terminus of each radial. Site features, settings, and representative cultural materials were to be photographed, mapped, and marked with a GPS device. A detailed plan map of each site was to be produced using standard techniques, and features and site boundaries were to be documented using submeter GPS receiver. A State of Texas Archeological Site Form would have been filled out for each site identified and submitted to TARL for the assignment of a trinomial.

Atkins conducted a diagnostic-only collection survey. Only artifacts such as projectile points, or historic artifacts with maker's marks or other definitive characteristics were to be collected during the survey efforts. Artifacts such as common lithic debitage, historic-age trash, or burned rocks were to be photo-documented, tabulated, analyzed, and documented in the field, but not collected.

Had human remains been identified during the survey efforts, then all work would have immediately ceased in the area and Atkins would have contacted the COSA staff about the discovery; however, human remains were not encountered and this contingency plan was not implemented.
III. PROJECT SETTING

The project is located within and adjacent to the Salado Creek floodplain, which is surrounded by extensive residential development in eastern San Antonio. It is situated primarily on moderately undulating uplands adjacent to the east and southeast of the creek crossing, with a smaller area of alluvial deposits to the west. The proposed roadway and hiking trail are located along the southern end of the Blackland Prairie physiographic region of Texas. Salado Creek feeds into the San Antonio River about 15 km (9.32 miles) south of the proposed project area.

GEOLOGY

The underlying geology of the project area is mapped mainly as Pleistocene-era fluvial terrace deposits, which consist of gravel, sand, silt, and clay (BEG 1983; United States Geologic Survey 2015).

SOILS

The overall project area soils are mapped as about 63 percent Rock outcrop-Olmos complex with 5 to 25 percent slopes, 25 percent occasionally flooded Loire clay loam with 0 to 2 percent slopes, and 12 percent rarely flooded Patrick soils with 1 to 3 percent slopes (U.S. Department of Agriculture [USDA] 2015).

Rock outcrop-Olmos complex

The Rock outcrop-Olmos complex consists of very shallow and shallow soils over a petrocalcic horizon. These are well-drained, moderately permeable soils that formed in loamy alluvium on undulating uplands (USDA 2015). The parent material is calcareous loamy alluvium weathered from limestone. It has a combined total thickness from A to E horizons of 4 to 20 inches.

Loire

The Loire series consists of very deep, well-drained, and moderately permeable silty clay loam that formed in loamy alluvial sediments on nearly level flood plains (USDA 2015). It has a combined total thickness from A to E horizons of 0 to 80 inches.

Patrick

Patrick soils consists of moderately deep, well-drained, and moderately permeable soils that formed in clayey over gravelly sediments. They are on nearly level to strongly sloping (0 to 10 percent) ancient terraces of uplands (USDA 2015). Patrick soils are typically located in Central Texas along major streams.
CULTURAL BACKGROUND

The project area is situated at the northern edge of the South Texas Plains Archaeological Region (northern edge of the Balcones Escarpment) and at the southern edge of the Central Texas Archaeological Region (Mercado-Allinger et al. 1996). The Cultural Developments in these regions are classified as Paleoindian, Archaic, Late Prehistoric, and Historic periods. The following prehistoric chronology is based on those of Hall et al. (1986) and Black (1989).

Paleoindian Period

In this region, the Paleoindian dates from about 11,000 to 6500 B.C. and is recognized as subsisting by hunting and gathering. Social organization during this period probably consisted of highly mobile bands of hunter-gatherers operating within large territories. Subsistence data reflect a very wide-spectrum diet (Hall et al. 1986; Hester 1983). Although, elsewhere in North America the hunters of this period are known for hunting large herbivores, including extinct Pleistocene species such as the mammoth, mastodon, camel, and bison, the evidence for this is scarce in south Texas and it was probably augmented by the utilization of wild plants and smaller animals. However, during investigations at Falcon Reservoir, an artifact was found in association with mammoth remains at the Evans site (Mercado-Allinger 1996).

Paleoindian sites are typically small campsites or kill sites on stream terraces (Mercado-Allinger 19996). A few Paleoindian sites have been excavated in south Texas, although sites from this period are particularly lacking. This is due in large part to the extent, to which the landscape has been modified since the early Holocene, with alluvial systems burying sites and eroding many others (Black 1989). Most Paleoindian sites recorded are those that are currently exposed on the surface (Hall et al. 1982). There was a marked diversification in subsistence patterns, within the archaeological record, toward the end of the Paleolithic period that gave way to a complex chronological period known as the Archaic period.

Archaic Period

During the transition from Paleoindian to the Early Archaic the prehistoric inhabitants began hunting a variety of small animals, including deer and rabbit, as well as gathering edible roots, nuts, and fruits (Black 1989). Site types include campsites, lookout sites, quarry sites, and rock shelters. The Archaic period is divided into three sub-periods: Early Archaic (8000 to 6000 B.C.), Middle Archaic (6000 to 2500 B.C.), and Late Archaic (2500 B.C. to A.D. 800). Early Archaic groups continue to exhibit many of the characteristics of the preceding Paleoindian period and the early part of this period is sometimes referred to as transitional between the Paleoindian and the Archaic periods.

The Early Archaic is poorly known in its earliest phases but a number of point types can be linked to that period (Turner et al. 2011). The Early Archaic is characterized by small game hunting and geophyte gathering and the use of large rock middens for cooking. Middle Archaic sites are more
varied in their settings, population density, and subsistence strategies than those of the Early Archaic. They have been found in uplands, lowlands, and along inland tributaries. An apparent increase in population density is marked by a change in subsistence strategies, which is evident in the development of ground stone artifacts such as manos, metates, and tubular pipes. During this time, burned rock middens became a specialized site type (Black 1989). The subsistence strategy altered from small mammal hunting in the shrublands and prairies to hunting bison which could support larger populations. The variety of projectile points that were distributed over large areas has prompted (Prewitt 1981) to suggest that these peoples were organized in ranging bands that were able to cover and roam broad territories.

By the beginning of the Late Archaic period, a proliferation of projectile point types again occurred and the frequency of burned-rock middens appears to have decreased. Prewitt has suggested that proliferation of projectile points during the earliest phase of this subperiod may represent a return to the Early Archaic pattern of small, dispersed bands with wide-ranging territorial areas. The latter part of this period appears to be marked by an emphasis on the utilization of a wide variety of food resources, perhaps indicative of population or climatic stress at this time. Projectile points diagnostic of the early part of the Late Archaic include Bulverde and Pedernales types. Later in the period Ensor, Frio, and Marcos point types became prominent. Cemeteries, especially associated with rockshelters, also become common in central Texas during the Late Archaic.

Late Prehistoric Period

The Late Prehistoric period (A.D. 800–1600) is much shorter in duration than the Archaic period and is divided into two phases based upon radio carbon dates and changes in arrow types and subsistence pursuits. The first phase of this period, the Austin Phase, dates to between A.D. 800 and 1300 and is manifested by Scallorn points and burned rock middens. During the second phase identified for the Late Prehistoric, the Toyah Phase, there are indications of major population movements, changes in settlement patterns, and perhaps lower population densities (Black 1989). The Late Prehistoric period also is marked by the introduction of several technological advances, most notably the bow and arrow and, later, pottery. The bow and arrow quickly became the standard weapon, replacing the throwing stick, or atlatl, and small thin arrow points became a key indicator among the material remains of the period. Sometime after the adoption of the bow and arrow, plainware ceramics were introduced into the area. This development probably came from agricultural groups to the east or northeast. Possible indications exist of major population movements, changes in settlement patterns and, perhaps, lower population densities during the Late Prehistoric period (Black 1989).
IV. RESULTS

RECORD SEARCH

The cultural resources background review revealed that the project area has not been surveyed, and no previously recorded archaeological sites are within or adjacent to the APE. Three prior cultural resource investigations are within a 1-km radius, but no NRHP-listed sites, SALs, OTHMs, or Recorded Texas Historic Landmarks were noted (Figure 2). The earliest work was by the Center for Archaeological Research, who surveyed the Salado Creek Hike and Bike Trail on behalf of COSA under Antiquities Permit 2917 about 0.25 km (0.16 mile) west of the APE (Weston et al. 2004). Archaeologists from Raba Kistner surveyed sanitary sewer siphon stations on behalf of the San Antonio Water Systems under Antiquities Permit 4730 about 0.50 km (0.31 mile) west of the APE (Held and Darnell 2008). Finally, SWCA Environmental Consultants surveyed a storm sewer system outfall on behalf of COSA under Antiquities Permit 5148 about 0.25 km (0.16 mile) south of the APE (Galindo 2009). The closest sites to the APE are 41BX1965 and 41BX1832, which are burned structural remnants and a historic debris scatter, and the Alsbury Family historic homestead complex, respectively.

A review of four maps from the Texas Department of Transportation historic overlay (Foster et al. 2006) revealed various cultural features that developed through time. The earliest map consulted was the 1887 map of Bexar County by J. J. Rullmann. The project area is depicted along Salado Creek, on the boundary between Parcel 93 assigned to Ignacio Perez and Parcel 151 assigned to Guitermo Nunez. W.W. White Road is labeled on the map to the east of the APE, while Old Sulphur Spring Road is north of it, and New Sulphur Spring Road is to the south (Foster et al. 2006). The 1903 U.S. Army Corps of Engineers (USACE) map of San Antonio depicts four two-track roads crossing Salado Creek at the APE, along with nearby residences and a church. An east-west oriented railroad line is north of the project location (Foster et al. 2006). The 1927 San Antonio East USACE map depicts a residence, well, and fencelines near the APE, along with the name, "Dittmar" and various two-track roads. St. Hedwig Road parallels the railroad that was first noted on the 1903 map (Foster et al. 2006). Finally, the 1953 San Antonio East U.S. Army Map Service map depicts a quarry within or adjacent the APE and extensive residential development surrounding it (Foster et al. 2006).

The patriarch of the Dittmar family tree, Albert Dittmar, came to south central Texas with his parents in the 1850s during a wave of German immigration (Daughters of the Republic of Texas [DRT] 2015). He studied law in Texas and practiced in New Braunfels before moving to San Antonio. After serving in the Confederate army during the Civil War, Dittmar returned to his hometown of Darmstadt, Germany, and married Emmy von Rehfues. The couple moved to San Antonio, where their children Charles, Lily, Guido, Mathilde (Mattie), and John were born (DRT 2015).
Figure 2. Cultural Resources within a 1-km radius of the APE.

(Not for public disclosure.)
Before Albert Dittmar died in 1887, he amassed a considerable amount of San Antonio-area real estate, which became the basis of the family business (DRT 2015). Son Charles Dittmar earned a law degree from the University of Texas, and devoted much of his career to the family’s property holdings.

Son John Dittmar’s main business in San Antonio was Southern Welding and Machine Co., but he was also involved in managing of family holdings. Son Guido Dittmar studied law at the University of Virginia, and worked in Washington, D.C. and New York before returning to Texas, where he made a career in real estate. Daughter Lily Dittmar married Dr. Richard A. Goeth of San Antonio and had two children before her death in 1907. None of the other Dittmar children married (DRT 2015).

Property owned by the Dittmars included commercial buildings within the city of San Antonio and undeveloped land outside the city limits (DRT 2015). One of the family’s most ambitious projects came under the Emmy Dittmar Improvement Company, which was formed in 1929 to build a new apartment-style hotel adjacent to the family residence on Howard Street in San Antonio. After the 1929 stock market crash, additional financing was arranged to complete the project, but the company defaulted on the note and the building was sold at a foreclosure auction. Other ventures of the Dittmars included the Central Development Company that primarily dealt with downtown property, and the Herff and Dittmar Land Company, which controlled 1,200 acres in the Olmos basin (DRT 2015).

While the Dittmar family likely owned land in the vicinity of the project area, as noted on the 1927 map, it is doubtful they occupied the residence and well complex that is mapped nearby in addition to their Howard Street house; rather, the land probably represents rural investment property.

CULTURAL RESOURCE SURVEY

The entire surface of the APE was subjected to a pedestrian inspection, and no archaeological sites were recorded during a survey of the 0.42-ha (1.04-acre) APE. A total of six shovel tests and three backhoe trenches was excavated, exceeding the minimum state survey standards (Figure 3). The archaeologists encountered grass-covered, undulating uplands in a riverine setting, with large, mature trees, tall grasses, and large areas of disturbances (Figure 4). Significant disturbances noted within the portion of the APE east and southeast of the creek crossing include erosion, flotsam deposition, modern trash dumping, and a brick, mortar, and rock push pile less than 1 m tall containing historic brick (Figure 5). Numerous push piles of modern trash, construction debris, and cobbles were noted throughout the area surrounding the APE, perhaps related to quarrying activities. Flotsam deposition was also noted west of the creek. Thick grass, fallen trees, and the understory of mature trees afforded no surface visibility throughout the APE. Shovel testing was confined to the east side of the creek, while backhoe trenches were excavated to the west of it. The depths of the shovel tests ranged from 30 to 35 centimeters below surface (cmbs), averaging 30.8 cmbs. Most of them encountered dense cobbles and gravel in a silty or sandy clay matrix over degrading marl bedrock (Table 1).
IV. Results

Figure 4. Overview of APE, south of the Salado Creek crossing, facing north.

Figure 5. Push pile of brick, mortar, and rock debris that is less than a meter in height, facing west.
Within the project area, Atkins archaeologists located a debris push pile less than 1 m tall that contained brick, mortar, and rock. Three blue glass shards and two whiteware sherds were also noted in the push pile, but no fragment had a maker’s mark. A seasonal spring was mapped along an ephemeral drainage by biologists about 15 m (50 ft) south of the push pile (see Figure 3). Among the debris was a brick embossed with the words, “THURBER BRICK” on one side (Figure 6). In the center of the brick is an engraved triangle with the letters “BTT,” which stands for “Brick Tile & Terracotta Workers Union.” The Thurber Brick Company adopted this logo 1903, but was established in 1900 as part of a preexisting coal mining operation in Thurber, Texas (Chamberlain 2015). Although a ghost town today, the site of the town is 75 miles west of Fort Worth in the northwest corner of Erath County (Maroney 2015). At the height of its production, the plant produced 80,000 bricks daily, employed 800 people, and was one of the more productive brick plants west of the Mississippi River. It produced 40 varieties of brick, including the higher-quality vitrified brick that was popular at that time. Production of Thurber bricks stopped in 1931 (Chamberlain 2015).

The APE east and southeast of Salado Creek crossing appears to have been a dumping ground for atypical debris for an unknown length of time prior to Atkins' investigation. Although historic debris including bricks manufactured between 1903 and 1931 was found in the area, the material appears to have been moved from its original location and dumped at the APE. As such, the construction debris lacks integrity and was not defined as an archaeological site or an isolated find.

Table 1: Survey Shovel Tests

<table>
<thead>
<tr>
<th>Shovel Test No.</th>
<th>Total Depth (cmbs)</th>
<th>Soil Color</th>
<th>Soil Texture</th>
<th>Inclusions/Cultural Materials</th>
<th>Termination Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJG 01</td>
<td>0–10</td>
<td>10YR 4/3</td>
<td>Humus</td>
<td>Rootlets</td>
<td>–</td>
</tr>
<tr>
<td>MJG 01</td>
<td>10–30</td>
<td>10YR 6/6</td>
<td>Clay</td>
<td>2 rusty bottle caps</td>
<td>Bedrock Marl</td>
</tr>
<tr>
<td>MJG 02</td>
<td>0–10</td>
<td>10YR 4/3</td>
<td>Loam, rootlets</td>
<td>None</td>
<td>–</td>
</tr>
<tr>
<td>MJG 02</td>
<td>10–30</td>
<td>10YR 7/3</td>
<td>Loamy clay</td>
<td>Asphalt fragment at bottom</td>
<td>–</td>
</tr>
<tr>
<td>MJG 02</td>
<td>30–35</td>
<td>10YR 6/4</td>
<td>Silty clay</td>
<td>None</td>
<td>Bedrock Marl</td>
</tr>
<tr>
<td>MJG 03</td>
<td>0–10</td>
<td>10YR 7/3</td>
<td>Loam</td>
<td>None</td>
<td>–</td>
</tr>
<tr>
<td>MJG 03</td>
<td>10–30</td>
<td>10YR 6/4</td>
<td>Silty clay</td>
<td>None</td>
<td>Bedrock Marl</td>
</tr>
<tr>
<td>JR 01</td>
<td>0–10</td>
<td>10YR 3/2</td>
<td>Coarse sandy loam</td>
<td>None</td>
<td>–</td>
</tr>
<tr>
<td>JR 01</td>
<td>10–20</td>
<td>10YR 7/3</td>
<td>Coarse sandy loam</td>
<td>None</td>
<td>–</td>
</tr>
<tr>
<td>JR 01</td>
<td>20–30</td>
<td>10YR 7/3</td>
<td>Sandy loam</td>
<td>None</td>
<td>Bedrock Marl</td>
</tr>
<tr>
<td>JR 02</td>
<td>0–30</td>
<td>7.5YR 4/4</td>
<td>Sandy clay loam</td>
<td>None</td>
<td>Bedrock Marl</td>
</tr>
<tr>
<td>JR 03</td>
<td>0–10</td>
<td>10YR 3/2</td>
<td>Sandy loam</td>
<td>None</td>
<td>–</td>
</tr>
<tr>
<td>JR 03</td>
<td>10–20</td>
<td>10YR 7/3</td>
<td>Sandy clay loam</td>
<td>None</td>
<td>–</td>
</tr>
<tr>
<td>JR 03</td>
<td>20–30</td>
<td>10YR 6/3</td>
<td>Sandy clay</td>
<td>Calcium carbonate</td>
<td>Bedrock Marl</td>
</tr>
</tbody>
</table>

Max Average: 30.83
The project area encompasses Salado Creek, which is a topographic setting with the potential for deeply buried archaeological sites; therefore, mechanical (backhoe) trenching was used to explore these deposits. The steep terrain, dense vegetation, and the undulating landscape east and south of the Salado Creek crossing prohibited access for the backhoe, but considering the thin rocky soils encountered in shovel tests, trenching was not warranted in this area (Figure 7). Therefore, we situated three trenches west of Salado Creek to determine if any intact archaeological deposits were present (Figures 8, 9, and 10). Trenches were excavated to a depth sufficient to determine if any intact cultural resources were present and then the general stratigraphy of the ground was recorded (Figures 11, 12, and 13). All trenching was monitored by an experienced archaeologist and all details were recorded with appropriate documentation and photographs. Three trenches were excavated and all were negative for cultural resources besides modern trash and flotsam noted on the surface or near it. Trenches 1 and 2 were in a wooded area adjacent to Salado Creek and each exhibited three to four strata of silty clay or clay at similar elevations, with the clay content increasing with depth (Table 2). A layer of coarse sand with shell and calcium carbonate inclusions was noted in Trench 2 between 90 and 95 cmbs. The most disturbance was encountered in Trench 3, which was excavated the furthest from the creek and within an existing picnic area of the park, about halfway between the parking lot and the riparian tree line. In fact, fill or disturbed sediment was encountered at 0–30 cm (0–11.81 inches), which included asphalt, gravel, modern glass, and plastic. From 30 to 40 cm (11.81 to 15.75 inches), a thick layer of modern debris was observed such as gravel, glass, asphalt, and colored paper from fireworks. Within Trench 3, the soil layers from 40 to 150 cm (15.75 to 59.05 inches) appear to be alluvial flood event deposits, and no modern or historic debris
was observed. No cultural material besides modern trash was observed during excavation, in the back fill pile, or in the walls of the trenches.

Figure 7. Overview of steep slope east of Salado Creek, facing north.

Figure 8. Overview of Trench 1 excavation, facing west.
IV. Results

Figure 9. Overview of Trench 2, facing southwest.

Figure 10. Overview of Trench 3, facing southeast.
IV. Results

Figure 11. Trench 1 stratigraphic profile of the eastern wall.
Figure 12. Trench 2 stratigraphic profile of the northwestern wall.
IV. Results

Figure 13. Trench 3 stratigraphic profile of the southwestern wall.
Table 2: Backhoe Trench Profiles

<table>
<thead>
<tr>
<th>Trench No.</th>
<th>Level</th>
<th>Depth (cmbs)</th>
<th>Soil Color</th>
<th>Soil Texture</th>
<th>Inclusions/Cultural Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0–80</td>
<td>10YR 3/3</td>
<td>Silty clay</td>
<td>Roots, rootlets, modern trash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dark brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>80–90</td>
<td>10YR 5/6</td>
<td>Sandy</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yellowish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>90–150</td>
<td>10YR 4/2</td>
<td>Silty clay</td>
<td>Roots, rootlets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dark grayish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0–70</td>
<td>10YR 3/2</td>
<td>Silty clay</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dark brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>70–90</td>
<td>10YR 4/3</td>
<td>Silty clay</td>
<td>Burned roots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>90–95</td>
<td>7.5YR 4/3</td>
<td>Silty clay</td>
<td>Crushed shell, degrading calcium carbonate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>95–125</td>
<td>10YR 4/3</td>
<td>Silty clay</td>
<td>Burned roots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0–30</td>
<td>10YR 3/5</td>
<td>Silty clay</td>
<td>Roots, rootlets, gravel/asphalt, modern trash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>30–40</td>
<td>10YR 3/5</td>
<td>Silty clay</td>
<td>Calcium carbonate, modern trash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>40–90</td>
<td>10YR 3/5</td>
<td>Silty clay</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>90–100</td>
<td>7.5YR 4/4</td>
<td>Clay</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>100–150</td>
<td>10YR 3/5</td>
<td>Sandy clay</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. SUMMARY AND RECOMMENDATIONS

On behalf of COSA, Atkins conducted an intensive cultural resources survey for a proposed roadway and pedestrian hike/bike trail at Martin Luther King Park. The APE encompasses approximately 0.42 ha (1.04 acres) in eastern San Antonio. The investigations included a background literature and records review, an intensive pedestrian survey with shovel testing, and mechanical trenching. The background review revealed that the project area has not been previously surveyed and no recorded sites are within or adjacent to it. Additionally, no previously recorded sites, historical markers, or cemeteries are located within a 1.0-km (0.62-mile) radius with the exception of three previously conducted surveys.

While the prominent Dittmar family likely owned land in the vicinity of the project area, as noted on a 1927 map, it is doubtful that they occupied the residence and well complex mapped nearby; rather, the land probably represents rural investment property. Although historic debris including bricks manufactured between 1903 and 1931 was found in the area, the material appears to have been moved from its original location and dumped at the APE. As such, the construction debris lacks integrity and was not defined as an archaeological site or an isolated find.

Overall, the intensive pedestrian survey revealed that the proposed APE is in a riverine setting with large, mature trees, and high grasses. The soil deposition varies greatly either side of the Salado Creek crossing. To the east and southeast is a rocky, limestone bluff with little or no soil, while the alluvial soils to the west were deep. A total of six shovel tests and three mechanical (backhoe) trenches was excavated throughout the APE. Besides the historic brick and modern trash, no cultural material was observed on the surface or in any subsurface investigation.

In accordance with 33 CFR 800.4, Atkins has made a reasonable and good faith effort to identify cultural resources within the APE. As no properties were identified that meet the criteria for listing in the NRHP according to 36 CFR 60.4, or for designation as an SAL according to 13 Texas Administrative Code 26.12, Atkins recommends no further cultural resource investigations within the APE.
VI. REFERENCES

Black, S. L.

Bureau of Economic Geology (BEG)

Chamberlain, F.

Daughters of the Republic of Texas (DRT)

Foster, Eugene, Ty Summerville, and Thomas Brown

Galindo, Mary Jo
2009 Intensive Archaeological Resources Survey of the Proposed 0.32-Acre Storm Sewer System Outfall for the North Hein (W.W. White to Hein West) and Hein West (Rice to North Hein) Project at Salado creek, East San Antonio, Bexar County, Texas. Antiquities Permit Number 5148. SWCA Environmental Consultants, Austin.

Hall, G. D., S. L. Black, and C. Graves

Hall, G. D., T. R. Hester, and S. L. Black
Held, P., and B. Darnell

Hester, T. R.

Maroney, J. C.

Prewitt, E. R.

Texas Archaeological Site Atlas (Atlas)

Turner, E.S., T.R. Hester, and R.L. McReynolds

United States Department of Agriculture (USDA), Natural Resources Conservation Services (NRCS)

United States Geologic Survey, Mineral Resources Database (USGS)

Weston, J. D., B. K. Moses, R. D. Greaves, B. A. Meissner, and R. B. Mahoney