Intensive Archaeological Survey of the Proposed
Olmos Basin Golf Course Bridge Replacement Project,
San Antonio, Bexar County, Texas

Antiquities Permit #7430

Principal Investigator: Melanie Nichols, M. Sc.

Prepared for Municipal Golf Association of San Antonio
2315 Avenue B
San Antonio, TX 78215

Report Authors: Joshua Hamilton, M.A.; and Melanie Nichols, M.Sc.
Pape-Dawson
7800 Shoal Creek Boulevard
Suite 220W
Austin, TX 78757
March, 2016
Abstract

At the request of the Municipal Golf Association of San Antonio, an intensive archaeological survey was conducted by Pape-Dawson for the proposed Olmos Basin Golf Course Bridge Replacement Project within the City of San Antonio in Bexar County, Texas. The proposed project will entail the demolition and replacement of ten existing culvert bridges with eight span bridges on the Olmos Basin Golf Course. As the Olmos Basin Golf Course is a municipal golf course operated by the City of San Antonio, compliance with the Antiquities Code of Texas (ACT) will be necessary. Since the project will require a Section 404 permit from the United States Army Corps of Engineers (USACE), compliance with Section 106 of the National Historic Preservation Act (NHPA) will also be necessary. In addition, the project is located within the San Antonio city limits, which necessitates compliance with the Historic Preservation and Urban Design Section of the City of San Antonio’s Unified Development Code.

For the purposes of this project, the Area of Potential Effects (APE) is defined as a 98 foot (ft) (30 meter [m]) buffer from the center of each bridge to be replaced. The APE will consist of a total area of approximately seven acres. The vertical depth of impact is considered to be up to 30 ft (9.1 m) below the ground surface based on typical bridge design.

The intensive pedestrian survey was conducted by Pape-Dawson archaeologists on September 30, 2015 and October 1, 2015. The entirety of the APE was subjected to visual inspection supplemented by judgmentally placed backhoe trenches and shovel tests in order to evaluate the impact of the proposed project on cultural resources. This work was conducted under Texas Antiquities Permit No. 7430. A total of seven backhoe trenches and 19 shovel tests were excavated within the APE. All backhoe trenches and shovel tests were negative for archaeological material. During the course of this survey, one previously recorded site (41BX1799) was revisited within the limits of the APE. However, no cultural deposits associated with site 41BX1799 were encountered. A historic resources survey was also completed for the Olmos Basin Golf Course Bridge Replacement Project by a Pape-Dawson historian. The results of the historic resources evaluation have been presented in a separate technical report (Anderon 2016).

No archaeological resources were located or recorded during the courses of this survey. Based on the survey findings, the Principal Investigator concludes that no significant or NRHP-eligible archaeological properties will be adversely affected by the proposed project. Pape-Dawson recommends that no further archaeological work is necessary for the proposed undertaking as presently designed and that the project be allowed to proceed within the APE. No artifacts were collected, but all project records and photographs will be curated at the Center for Archeological Research (CAR) at the University of Texas at San Antonio.
Table of Contents

Abstract ... ii
List of Figures .. v
Introduction .. 1
Project Setting... 4
Methods .. 5
 Records Review ... 5
 Fieldwork... 5
Results ... 6
 Records Review ... 6
 Fieldwork... 9
Summary and Recommendations .. 16
References Cited ... 21
List of Tables

Table 1 Archaeological Sites within the APE..6
Table 2 Archaeological Sites within 1 km of the APE..6
List of Figures

Figure 1 Project Location Map ...2
Figure 2 APE and Bridge Location Map..3
Figure 3 Previously Recorded Cultural Resources within 1 km of the APE Map..7
Figure 4 Backhoe Trench and Shovel Test Location Map10
Figure 5 Shovel Test Profile..11
Figure 6 Backhoe Trench 5 Southern Wall Profile......................................13
Figure 7 Backhoe Trench 7 Southern Wall Profile......................................15
Figure 8 Overview of Site 41BX1799..16
Figure 9 Site 41BX1799 Map...18
Figure 10 Representative profile of shovel test excavated to investigate site 41BX1799 ..19
Figure 11 Backhoe Trench 1 Northern Wall Profile....................................19
Introduction

The Municipal Golf Association of San Antonio (MGASA) proposes to demolish and replace ten existing culvert bridges with eight span bridges within the Olmos Basin Golf Course in the City of San Antonio, Bexar County, Texas (Figure 1). Six of the bridges to be replaced are situated along Olmos Creek, and the other four bridges are located along an unnamed tributary to Olmos Creek. The northernmost bridge along this tributary partially falls within the boundary of previously recorded archaeological site 41BX1799.

As the Olmos Basin Golf Course is a municipal golf course operated by the City of San Antonio, compliance with the Antiquities Code of Texas (ACT) will be necessary. Since the project will require a Section 404 permit from the United States Army Corps of Engineers (USACE), compliance with Section 106 of the National Historic Preservation Act (NHPA) will also be necessary. In addition, the project is located within the San Antonio city limits, which necessitates compliance with the Historic Preservation and Urban Design Section of the City of San Antonio’s Unified Development Code.

For the purposes of this project, the Area of Potential Effects (APE) is defined as a 98 foot (ft) (30 meter [m]) buffer from the center of each bridge to be replaced (Figure 2). The APE will consist of a total area of approximately seven acres. The vertical depth of impact is considered to be up to 30 ft (9.1 m) below the ground surface based on typical bridge design.

At the request of MGASA, an intensive archaeological survey was performed by Pape-Dawson for the proposed Olmos Basin Golf Course Bridge Replacement project. Fieldwork took place on September 30, 2015 and October 1, 2015. Melanie Nichols served as Principal Investigator and was assisted in the field by Katie Hill and Jacob Sullivan. The goals of the investigation were to: (1) locate all prehistoric and historic archaeological sites, if present, within the APE; (2) establish vertical and horizontal site boundaries, as appropriate with respect to the APE; (3) evaluate the significance of recorded sites and structures with regard to National Register of Historic Places (NRHP) and State Antiquities Landmark (SAL) eligibility. A historic resources survey was also completed for the Olmos Basin Golf Course Bridge Replacement Project by a Pape-Dawson historian. The results of the historic resources evaluation have been presented in a separate technical report (Anderson 2016).
Figure 1: Project Location Map

Westpoints PN: 8917-00
Bexar County, Texas
Cultural Resources Report
January 2016
Figure 2: APE and Bridge Location Map

Olmos Basin PN: 8917-00
Bexar County, Texas
Cultural Resources Report
January 2016
Project Setting

The project is located in north-central San Antonio and northeast of the intersection of Basse Road and McCullough Avenue. The APE is situated within the Olmos Basin Golf Course, which opened in 1963, and is surrounded by residential neighborhoods (Municipal Golf Association-San Antonio 2012). Although the golf course underwent renovations in 1994 (Dase 2011), historical and modern aerial photographs show that the ten subject bridges appear to have remained intact and in their original locations since their construction in the early 1960s. Prior to the 1960s, the land remained undeveloped and unimproved with the exception of a few two-track roads and a branch of the Missouri Pacific Railroad located within the eastern half of the property (NETR Online 2016). Although the two-track roads were removed during the construction of the golf course, the railroad still exists within the property today. Three perennial streams traverse through the golf course. Olmos Creek enters the western portion of the Olmos Basin Golf Course boundary and flows along a west to east direction, dividing the golf course into halves. An unnamed tributary to Olmos Creek enters the northwestern portion of the Olmos Basin Golf Course and proceeds 0.38-mile east where it confluences with another unnamed tributary. The stream then proceeds along a southerly direction until it confluences with Olmos Creek within the center portion of the golf course.

Located along the margins of the Blackland Prairie and the Interior Coastal Plains regions of central Texas (Wermund 1996), the project landscape is dominantly characterized by narrow floodplains and low stream terraces associated with Olmos Creek and its tributaries. However, gently sloping upland terrain is located across the northernmost portions of the APE. The APE is located within an area that is geologically mapped as Pleistocene-age Fluvial terrace deposits (United States Geological Survey 2005). These terrace deposits outcrop adjacent to the immediate channels of significant water systems. The soils that formed within these Pleistocene-age deposits within the APE belong to the Tinn and Frio (TF) and Houston Black (HsB) series. Tinn and Frio soils are the dominant soils within the APE, are classified as a Vertisol and Mollisol, respectively, and are formed in calcareous clayey alluvium. These soils are located on the floodplains of streams that drain the Blackland Prairies. Tinn soils are characterized by black clay (A-horizon) overlying black clay (B-horizon) at an average depth of 18 inches (46 centimeter [cm]) below the ground surface, and Frio soils consist of dark grayish brown silty clay (A-horizon) yielding to grayish brown silty clay (B-horizon) at depths of approximately 40 inches (102 cm) below ground surface. The remainder of the soil within the APE is mapped as Houston Black clay (1 to 3 percent slopes). Houston Black soils are classified as Vertisols and are formed in clayey residuum derived from calcareous mudstone of Cretaceous Age. Soils of the Houston Black series are found on interfluvies and on side slopes of upland ridges and dissected plains and consist of very dark gray clay with a granular structure (A-horizon) yielding to very dark gray clay with a blocky structure (B-horizon) at depths of approximately 20 cm (8 in) below ground surface (Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture 2016).

The soils in the APE are predominately mapped as floodplain soils derived from alluvial sediments, and therefore, have the potential to contain buried archaeological deposits. However, Houston Black is an upland soil, and therefore, it was anticipated that archaeological deposits, if present on upland terrain, would be shallowly buried or on the ground surface and visible to surface inspection.
Methods

Records Review
Prior to fieldwork, a Pape-Dawson archaeologist performed a literature review to determine whether any previously recorded cultural resources were located within 1 km (0.62 miles) of the APE. The archaeologist consulted the Texas Historical Commission’s (THC) Texas Historic Sites Atlas and the Texas Archaeological Sites Atlas, as well as site records and maps at the Texas Archaeological Research Laboratory (TARL) to determine whether any previously recorded archaeological sites, National Register of Historic Places (NRHP) listed properties, Recorded Texas Historic Landmarks (RTHLs), State Antiquities Landmarks (SALs), Official State of Texas Historic Markers (OTHMs), cemeteries, and previously conducted archaeological surveys are located within 1 km of the APE. The City of San Antonio’s Historic Landmark Sites and Historic Districts GeoDatabases were also consulted.

Fieldwork
Pape-Dawson archaeologists performed a 100% pedestrian survey of the area within a 98 ft (30 m) radius of the center of each bridge location where ground disturbing impacts are set to occur. The pedestrian survey included a visual inspection of the ground surface supplemented by judgmental shovel testing in areas with perceived potential for buried cultural deposits. A total of 19 shovel tests were excavated to investigate the approximately 7-acre APE, exceeding the state’s minimum standard of 2 shovel tests per acre for project areas measuring between 3 to 10 acres in size. Shovel tests were roughly 11.8 inches (30 cm) in diameter and were excavated in 4 inch (10 cm) levels to sterile clay, bedrock, or to a maximum of 31.5 inches (80 cm) below the ground surface when intact soils were encountered. Some shovel tests were terminated at 19.7 inches (50 cm) below the surface due to the presence of modern trash throughout the vertical column. All soils were screened through ¼-inch wire mesh unless clay concentrations were high enough to require hand sorting. All shovel tests were recorded, visually described, plotted by a Global Positioning System (GPS) unit, and backfilled upon completion.

Pape-Dawson personnel also conducted archaeological trenching near the bridges to be replaced and/or constructed along Olmos Creek, as well as the bridge to be replaced that fell within the site boundary of 41BX1799. A total of seven backhoe trenches were excavated to investigate the project’s potential to impact deeply buried cultural deposits within the APE. Trenches were approximately 4 to 5 ft (1.2 to 1.5 m) deep and were excavated in 4 inch (10.2 cm) levels with a flat blade bucket. Archaeologists recorded representative trench profiles and mapped the trenches with a handheld Trimble GPS unit. Trenches were backfilled upon completion.

No artifacts were recovered or collected during the course of this archaeological survey. All original paperwork (e.g., photographs, shovel test logs) will be curated at the Center for Archaeological Research (CAR) at the University of Texas at San Antonio following the specified standards of preparation.
Results

Records Review

The results of this cultural resources background review identified six previously recorded archaeological sites (41BX193, 41BX1426, 41BX1799, 41BX1800, 41BX2008, and 41BX2009) and one NRHP-listed property (the fountain at the Alamo Cement Company) within 1 km of the APE. No SALs, OTHMS, RTHLS, or cemeteries were found to have been documented within the 1 km radius. Of the seven identified cultural resources, only one (site 41BX1799) is located within the APE. This previously recorded site is situated directly adjacent to the APE’s northernmost bridge (Table 1, Table 2, and Figure 3).

Table 1: Archaeological Sites within the APE.

<table>
<thead>
<tr>
<th>Archaeological Site</th>
<th>Site Type</th>
<th>Landform</th>
<th>Depths of Deposits</th>
<th>Distance & Direction from APE</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>41BX1799</td>
<td>Prehistoric lithic scatter and quarry site</td>
<td>On a shallow rise west of an unnamed tributary to Olmos Creek</td>
<td>0-5 cmbs, but likely disturbed</td>
<td>Within APE</td>
<td>SHPO determination: Ineligible</td>
</tr>
</tbody>
</table>

Table 2: Archaeological Sites within 1 kilometer of the APE.

<table>
<thead>
<tr>
<th>Archaeological Site</th>
<th>Site Type</th>
<th>Landform</th>
<th>Depths of Deposits</th>
<th>Distance & Direction from APE</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>41BX193</td>
<td>Prehistoric lithic scatter</td>
<td>Floodplain and lower terraces of Olmos Creek</td>
<td>Not provided</td>
<td>400 m S</td>
<td>Recording archaeologist recommended the site for testing.</td>
</tr>
<tr>
<td>41BX1426</td>
<td>Prehistoric lithic scatter w/ scattered burned rock</td>
<td>Olmos Creek floodplain and first terrace</td>
<td>20-120 cmbs</td>
<td>820 m SE</td>
<td>SHPO determination: Undetermined</td>
</tr>
<tr>
<td>41BX1800</td>
<td>Prehistoric lithic scatter w/ scattered burned rock</td>
<td>On a shallow rise north of Olmos Creek</td>
<td>0-10 cmbs, but likely disturbed</td>
<td>90 m N</td>
<td>SHPO determination: Ineligible</td>
</tr>
<tr>
<td>41BX2008</td>
<td>Prehistoric lithic scatter; historic scatter</td>
<td>Olmos Creek floodplain</td>
<td>10-60 cmbs</td>
<td>500 m SE</td>
<td>SHPO determination: Undetermined</td>
</tr>
<tr>
<td>41BX2009</td>
<td>Prehistoric lithic scatter w/ scattered burned rock</td>
<td>Olmos Creek floodplain</td>
<td>0-60 cmbs</td>
<td>300 m SE</td>
<td>SHPO determination: Undetermined</td>
</tr>
</tbody>
</table>

Site 41BX1799 was originally recorded by SWCA in 2008 during the archaeological monitoring of irrigation improvements within the Olmos Basin Golf Course. The site was described as a prehistoric lithic scatter and quarry site of an unknown temporal affiliation. The site extends along the toeslopes of
This page has been redacted as it contains restricted information
a northwest to southeast trending hill and is located on the west side of an unnamed tributary to Olmos Creek. While trenching, tested chert cobbles, lithic flakes, and two biface preforms were found beneath the thin layer of maintained grass. The soil covering the site was assumed to have been brought in for grass cultivation. The integrity of the site was reported to have been largely destroyed during the construction and maintenance of the golf course (Culotta et al 2010). According to the THC’s online atlas, the SHPO determined the site to be ineligible for NRHP inclusion in 2009.

During the background review, the previously conducted surveys within the APE and within 1 km buffer were also reviewed. In 2008, SWCA conducted an approximately 220 acre survey of the entire Olmos Basin Golf Course, which is the site of the current bridge replacement project. SWCA’s investigation of the golf course included a surface survey, 17 backhoe trenches placed in high probability areas, and the monitoring of the installation of a new irrigation system. This investigation resulted in the recording of sites 41BX1799 and 41BX1800. Both sites were found to be heavily disturbed by the construction and maintenance of the golf course and were recommended as ineligible for listing as SALs (Culotta et al 2010).

Four additional archaeological investigations have been previously conducted within 1 km of the APE. Two of those investigations occurred adjacent to the APE. They consist of a City of San Antonio-sponsored survey conducted within the southeastern portion of the golf course and archaeological monitoring conducted by the Center for Archaeological Research (CAR) within the San Pedro Driving Range, which is located directly across McCullough Avenue from the Olmos Basin Golf Course. No archaeological sites were recorded as a result of either investigation. The other two investigations include a roughly 5.3 acre survey in which site 41BX193 was recorded and a CAR survey of a proposed trail within Olmos Basin Park that resulted in the recording of sites 41BX2008 and 41BX2009 and a revisit of site 41BX1426.
Fieldwork
Pape-Dawson archaeologists conducted the archaeological survey on September 30, 2015 and October 1, 2015. The field crew walked the APE, visually inspecting the ground surface and cut banks for artifacts and features. Shovel tests were placed in areas displaying minimal disturbance. However, the survey found the majority of the APE to be extensively disturbed. Backhoe trenches were primarily placed along the floodplain and low terraces of Olmos Creek. Previous impacts to the APE were photographed and noted as part of the survey effort. The vegetation within the APE largely consisted of well-maintained short grasses that limited ground surface visibility to less than 30 percent at the time of the survey. Trees within the APE consisted mainly of live oaks scattered along stream channels and golf cart paths.

During the course of this survey, one previously recorded site (41BX1799) was revisited within the limits of the APE. Two backhoe trenches and four shovel tests were excavated within and near the original site boundary. However, no archaeological material associated with site 41BX1799 was encountered.

Disturbances to the APE were found to have resulted from both artificial and natural impacts. Artificial disturbances included historical agricultural activities and the construction and maintenance of the Olmos Basin Golf Course. Natural impacts to the APE largely resulted from water erosion as evidenced by areas where soil from the channel embankments has been washed away.

Shovel Testing
A total of 19 shovel tests (Figure 4) were excavated during the survey of the seven-acre APE. Shovel tests were excavated in areas with the perceived potential for containing intact archaeological deposits. The excavation of shovel tests across the APE verified soils documented during the background research. Since the majority of the APE was located within the Olmos Creek floodplain, most of the recorded intact soils were deep clayey soils belonging to the Tinn and Frio clay soil series. These soils were characterized as a dark gray clay loam (ranging from 10YR4/2 to 10YR2/1) that were compact and contained a moderate amount of cobbles and gravels (Figure 5). However, more than half of the shovel tests (n=10) exposed disturbed soils evidenced by the presence of modern debris including plastic, beer bottle glass, and metal within the vertical column. Shovel tests were typically terminated at 50 centimeters below surface (cmbs) within intact soils and between 25 and 50 cmbs where fill or disturbed sediments were encountered. Subsurface exposures, in the form of cut banks or terraces, were inspected to provide additional insight into the stratigraphic composition of the valley floor. No cultural resources were encountered during the excavation of the shovel test units.
Figure 4: Backhoe Trench and Shovel Test Location Map

Olmos Basin PN: 8917-00
Bexar County, Texas
Cultural Resource Report
January 2016
Backhoe Trenching

Backhoe trench investigations were conducted within the APE to assess the overall potential for containing deeply buried cultural resources. A total of seven backhoe trenches (see Figure 4) were excavated within the APE. Trenches 1 and 2 were located within the northeastern portion of the golf course along the terraces of the unnamed tributary to Olmos Creek. Trenches 3 through 7 were located within the center portion of the golf course along the floodplain and primary terraces of Olmos Creek. Trenches measured 15 ft (4.6 m) in length and were approximately 2 ft (0.6 m) wide. Nearly half of the trenches (Trenches 1, 6, and 7) revealed multiple layers of fill throughout the stratigraphic column. Fill layers were usually indicated by an abrupt change in soil or high gravel and/or cobble content. However, all of the trenches, aside from trench 3, contained at least one layer of fill within the upper limits of the vertical soil column evidenced by many inclusions of modern trash in conjunction with abrupt soil changes. Fill deposits likely reflect areas where the golf course has been built up to achieve a desired elevation or slope. Natural soil deposits encountered within trenches were alluvial in origin.

Backhoe Trench 1 (BHT 1)

BHT 1 was excavated on a toe slope of a small upland rise situated adjacent to an unnamed tributary to Olmos Creek. During the excavation of the trench, the backhoe exposed four soil zones. Zone I consisted of a dark grayish brown (10YR4/2) silty clay loam that extended from the surface to 11.8 inches (30 cm) below the surface. Underneath Zone I, Zone II consisted of a very dark grayish brown (10YR3/2) clay
intermixed with yellowish brown (10YR5/8) clay mottles that extended to a depth of 15.7 inches (40 cm) below the surface. A moderate amount of gravels and occasional asphalt and concrete aggregate were observed within the zone. Zone III consisted of an isolated pocket of gravel fill located near the eastern extent of the trench. This fill patch was observed between 9.8 inches (25 cm) to 21.7 inches (55 cm) below the surface and contained a water utility pipe. Zone IV, found directly underneath Zone II, consisted of a very dark grayish brown (10YR3/2) clay that extended to 47.2 inches (120 cm) below the surface.

BHT 2

BHT 2 was excavated on a toe slope of a small upland rise situated adjacent to an unnamed tributary to Olmos Creek. Five soil zones were exposed during the excavation of the trench. Zone I consisted of a black (10YR2/1) clay loam that extended from the surface to 13.8 inches (35 cm) below the surface. The zone contained many roots and rootlets and modern trash consisting of plastic and Styrofoam fragments. Zone II lay beneath Zone I and consisted of a dark grayish brown (10YR4/2) clay loam that extended 21.7 inches (55 cm) below the surface. The roots and rootlets continued through this zone and a moderate amount of calcium carbonate flecks were also observed. Zone III consisted of a dark gray (10YR4/1) clay that extended 37.4 inches (95 cm) below the surface. The moderate amount of calcium carbonate flecks continued through this zone and the amount of roots and rootlets diminished. Bioturbation from small insectivores was also observed throughout the zone. Zone IV consisted of a black (10YR2/1) clay that extended 46.5 inches (118 cm) below the surface and contained many chert and limestone gravels and pebbles. Zone V was the final soil horizon and consisted of a black (10YR2/1) clay that extended 55.1 inches (140 cm) below the surface. A moderate amount of calcium carbonate and organic flecks and a few rounded chert pebbles were observed.

BHT 3

BHT 3 was located within the eastern portion of the golf course along the northern terrace of Olmos Creek. During the excavation of the trench, the backhoe exposed seven soil zones. Zone I consisted of a dark grayish brown that extended 7.5 inches (19 cm) below the surface. Directly beneath Zone I, Zone II consisted of an alluvial gravel deposit that ranged between 0.4 to 1.2 inches (1 to 3 cm) in width. Zone III consisted of a dark grayish brown (10YR4/2) silty clay loam that extended 9.8 inches (25 cm) below the surface. Zone IV consisted of another alluvial gravel deposit that ranged between 0.8 to 1.2 inches (2 to 3 cm) in width. Underneath the alluvial gravel, Zone V consisted of a dark grayish brown 10YR4/2 silty clay loam and extended 17.7 inches (45 cm) below the surface. Zone VI consisted of another alluvial gravel deposit that ranged between 0.8 to 1.2 inches (2 to 3 cm) in width. Zone VII consisted of a dark grayish brown (10YR4/2) clay loam that extended to 51.2 inches (130 cm) below the surface.

BHT 4

BHT 4 was situated within the center of the golf course and along the southern terrace of Olmos Creek. Three soil zones were exposed during the excavation of the trench. Zone I consisted of a dark grayish brown (10YR4/2) silty clay loam that extended 11.8 inches (30 cm) below the surface. Many fine roots and a few pieces of modern trash were observed within the zone. Zone II was located directly
underneath Zone I and consisted of a dark grayish brown (10YR4/2) clay loam that extended 43.3 inches (110 cm) below the surface. A few medium size roots extended from Zone I into Zone II. Zone III consisted of a brown (10YR5/3) clay that extended to the maximum depth of 51.2 inches (130 cm) below the surface.

BHT 5

BHT 5 was located within the center portion of the golf course and along the southern terrace of Olmos Creek. During the excavation of the trench, the backhoe exposed five soil zones. Zone I consisted of a dark grayish brown (10YR4/2) silty clay loam that extended 13.8 inches (35 cm) below the surface. Directly beneath Zone I, Zone II consisted of a very dark grayish brown (10YR3/2) clay loam with black (10YR2/1) clay mottles that extended 17.7 inches (45 cm) below the surface. The zone had a small amount of alluvial gravels and a few pieces of modern trash. Zone III consisted of a brown (10YR5/3) silty loam alluvium that extended 22 inches (56 cm) below the surface. Beneath Zone III, Zone IV consisted of a dark grayish brown (10YR4/2) clay loam alluvium with brown (10YR5/3) clay mottles that extended to 32.3 inches (82 cm) below the surface. A moderate amount of small gravels were observed throughout the zone. The final soil horizon, Zone V, consisted of a dark grayish brown (10YR4/2) clay that extended to the maximum depth of 51.2 inches (130 cm) below the surface (Figure 6).
BHT 6

BHT 6 was situated within the center portion of the golf course and along the northern bank of Olmos Creek. Five soil zones were exposed during the trenching of the unit. Zone I consisted of a dark grayish brown (10YR4/2) clay loam that extended to 21.3 inches (54 cm) below the surface. Many small roots were present throughout the unit and a few plastic fragments were observed. Below Zone I, Zone II consisted of yellow (10YR7/6) sand fill that ranged between 1.6 to 2.7 inches (4 to 6 cm) in width. Zone III consisted of very dark grayish brown (10YR3/2) clay that extended 37.8 inches (96 cm) below the surface. The zone contained many round chert pebbles and gravels and a moderate amount of calcium carbonate flecks. Directly underneath, Zone IV consisted of a dark grayish brown (10YR4/2) clay that extended 45.3 inches (115 cm) below the surface. Many calcium carbonate flecks and a few round chert pebbles were observed. Zones V consisted of a pale brown (10YR6/3) clay with yellowish brown (10YR5/8) clay mottles that extended to a maximum depth of 51.2 inches (130 cm) below the surface. A moderate amount of chert cobbles, gravels, and pebbles were observed, as well as a few iron oxide pebbles.

BHT 7

BHT 7 was located within the western portion of the golf course and along the northern terrace of Olmos Creek (Figure 7). During the excavation of the trench unit, the backhoe exposed six soil zones. Zone I consisted of a very dark grayish brown (10YR3/2) sandy clay that extended 10.2 inches (26 cm) below the surface. Many roots and gravels were present throughout the unit and a few pieces of modern trash were observed. Directly underneath, Zone II consisted of a very dark grayish brown (10YR3/2) clay loam with brownish yellow (10YR6/8) clay mottles that extended 17.3 inches (44 cm) below the surface. Zone III consisted of a thin dark brown (10YR3/3) clay soil that ranged between 0.8 to 1.2 inches (2 to 3 cm) in width. The zone contained a high density of gravels and pebbles. Below Zone III, Zone IV consisted of a dark yellowish brown (10YR4/4) sandy clay with a dark grayish brown (10YR4/2) clay mottles that extended 35.4 inches (90 cm) below the surface. Zone V consisted of a very dark grayish brown (10YR3/2) clay with a dark yellowish brown (10YR4/4) clay mottles that extended 53.9 inches (137 cm) below the surface. A few gravels and a few amber beer glass bottle shards were observed within the horizon. The final soil horizon, Zone VI, consisted of a yellowish brown (10YR5/4) clay that extended to the maximum depth of 57.1 inches (145 cm) below the surface. Several large cobbles and shells were observed along the base of the excavated trench.
Figure 7: Backhoe Trench 7 Southern Wall Profile
Site Description

41BX1799

Setting and Description

Site 41BX1799 is a previously recorded prehistoric lithic scatter and quarry site of indeterminate temporal affiliation located on gently sloping toe slopes of an upland rise that extend along an unnamed tributary to Olmos Creek. The site was originally recorded by SWCA in 2008 during the archaeological monitoring of irrigation improvements within the Olmos Basin Golf Course. Measuring 7530 meters (N-S) by 375 meters (E-W), the site was reported to consist of a few tested chert cobbles, lithic flakes, and two biface preforms located between 0 to 5 cmbs. However, the integrity of the site was reported to have been largely destroyed during the construction and maintenance of the golf course (Culotta et al 2010). Vegetation at the site is currently characterized as well-maintained short grasses with a scatter of live oak trees along the stream channel and golf cart paths. Dense grasses at the site limited ground surface visibility to less than 30 percent at the time of the survey (Figure 8). Soils in the area have been mapped as Houston Black clay, 1 to 3 percent slopes (USDA, SCS 2014).

Figure 8: Overview of Site 41BX1799, facing west
Work Performed and Recommendation

Site 41BX1799 was revisited by Pape-Dawson archaeologists during the course of the current survey. The ground surface was visually inspected, and four shovel tests and two backhoe trenches (BHT 1 and BHT 2) were excavated to investigate the potential for subsurface archaeological deposits within and near the original site boundary (Figure 9). Each shovel test exposed very dark grayish brown to black clay with common limestone gravels and was terminated at 50 cm below surface (Figure 10). BHT 1 (Figure 11) and BHT 2, detailed in the previous section, were terminated at 120 cmbs. All shovel tests and both trenches were negative for cultural material. No archaeological deposits associated with site 41BX1799 were observed with the APE during the current survey effort.
This page has been redacted as it contains restricted information
Figure 10: Representative profile of shovel test excavated to investigate site 41BX1799

Figure 11: Backhoe Trench 1 Northern Wall Profile
Summary and Recommendations

On September 30, 2015 and October 1, 2015, Pape-Dawson conducted an archaeological investigation for the proposed Olmos Basin Golf Course Bridge Replacement project within the City of San Antonio in Bexar County, Texas. The APE for the proposed project is defined as the 98-ft (30 m) buffer around each bridge to be replaced. The APE will consist of a total area of approximately seven acres. The entirety of the APE was subjected to an intensive archaeological survey. The majority of the APE was found to be heavily disturbed. A total of 19 shovel tests and seven backhoe trench units were excavated to investigate the APE in areas displaying minimal disturbance. All shovel tests and backhoe trenches were negative for archaeological material. During the course of this survey, one previously recorded site (41BX1799) was revisited within the limits of the APE. However, no cultural deposits associated with site 41BX1799 were encountered.

No archaeological resources were located or recorded during the courses of this survey. Based on the survey findings, the Principal Investigator concludes that no significant or NRHP-eligible archaeological properties will be adversely affected by the proposed project. Pape-Dawson recommends that no further archaeological work is necessary for the proposed undertaking as presently designed and that the project be allowed to proceed within the APE. However, if cultural material is encountered during construction, it is recommended that all work in the vicinity should cease and that the discovery be evaluated by a qualified archaeologist who can provide guidance on how to proceed in accordance with state regulations.
References Cited

Anderson, N.J.

Bureau of Economic Geology (BEG)

Culotta, D.S., M.R. Chavez, and K. A. Miller

Dase, Amy E.

Municipal Golf Association San Antonio

NETR Online

United States Department of Agriculture, Soil Conservation Service (USDA)

Wermund, E.G.