Cultural Resources Survey
MODIFIED INTENSIVE PEDESTRIAN SURVEY OF
SOUTHTOWN APARTMENTS, 2.3 ACRES
IN THE SOUTHWEST QUADRANT OF THE INTERSECTION OF
EAST CEVALLOS STREET AND PROBANDT AVENUE,
SAN ANTONIO, BEXAR COUNTY, TEXAS

July 31, 2014
Terracon Project No. 90147292

Prepared for:
Transwestern

Prepared by:
Terracon Consultants, Inc.
San Antonio, Texas
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Environmental Setting</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Geology</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Soils</td>
<td>2</td>
</tr>
<tr>
<td>2.3 Vegetation and Wildlife</td>
<td>2</td>
</tr>
<tr>
<td>2.4 Current and Past Climates</td>
<td>2</td>
</tr>
<tr>
<td>3.0 Cultural History</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Prehistoric</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Historic</td>
<td>4</td>
</tr>
<tr>
<td>4.0 Methods</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Desktop Review</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Backhoe Trenching</td>
<td>4</td>
</tr>
<tr>
<td>4.3 Intensive Pedestrian Survey</td>
<td>4</td>
</tr>
<tr>
<td>4.4 Artifact Analysis</td>
<td>5</td>
</tr>
<tr>
<td>5.0 Results</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Desktop Review</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Backhoe Scraping</td>
<td>6</td>
</tr>
<tr>
<td>5.3 Intensive Survey</td>
<td>7</td>
</tr>
<tr>
<td>5.4 Site 41BX2017</td>
<td>8</td>
</tr>
<tr>
<td>6.0 Conclusions and Recommendations</td>
<td>8</td>
</tr>
<tr>
<td>7.0 References Cited</td>
<td>9</td>
</tr>
</tbody>
</table>
CULTURAL RESOURCES SURVEY: MODIFIED INTENSIVE PEDESTRIAN SURVEY OF SOUTHTOWN APARTMENTS, 2.3 ACRES IN THE SOUTHWEST QUADRANT OF THE INTERSECTION OF EAST CEVALLOS STREET AND PROBANDT AVENUE, SAN ANTONIO, BEXAR COUNTY, TEXAS

Terracon Project No. 90147292
July 31, 2014

1.0 INTRODUCTION

This report describes the results of a modified intensive cultural resources survey of 2.3 acres in the southwestern quadrant of the intersection of East Cevallos Street and Probandt Street on behalf of Transwestern, whose intent it is to develop the parcel into medium- to high-density residential units. Because of the project's proximity to a City of San Antonio (COSA) river improvement overlay (RIO) district, numerous historical properties, and review in the platting process, the COSA Assistant City Archaeologist, Matthew Elverson, called for an intensive survey of cultural resources to include backhoe trenching of deep alluvial deposits at the site.

Following brief discussions of the environmental and cultural contexts and methods, results of the survey are presented below. The report concludes with a summary and recommendations, and all maps and field photos are attached at the end of the document.

2.0 ENVIRONMENTAL SETTING

Environmental settings are composed of elements such as underlying bedrock geology, soil, biology (i.e., plants and animals), and climate, and environmental conditions play a role in supporting human inhabitants. These conditions also affect the initial patterning and subsequent preservation of materials left behind by humans, the culmination of which is referred to as site formation processes. It is therefore important to consider environmental conditions of the past and present when assessing cultural resources.

Generally, the project site is located at the transition between two large-scale biotic provinces, the Edwards Plateau and the Gulf Coastal Plains. Specifically defined by the U.S. Environmental Protection Agency, the area is found near the boundary between the Edwards Plateau and Blackland Prairie ecoregions (Griffith et al. 2004). These transitional zones are also known as ecotones, and they typically support a tremendous amount of biological richness and diversity (Crumley 1994).
2.1 Geology

The project site is situated along the southeastern margin of the Edwards Plateau in the Balcones Fault Zone, which was most active 10 to 20 million years ago during the Miocene (Spearing 1991). In this area, the Balcones Escarpment marks the boundary between the uplifted Edwards Plateau to the north and west and the downthrust Gulf Coastal Plains to the south and east. Bedrock geology of the project site is mapped as Quaternary Fluvial terrace deposits (Qt), which is gravel, limestone, dolomite, and chert in abandoned floodplains (Barnes 1974).

2.2 Soils

As described by Taylor et al. (1962), the soil unit found in the project site is Lewisville silty clay, 1 to 3 percent slopes (LvB). This unit is found on relatively flat treads of alluvial terraces deposited during the Quaternary period, and they are generally well drained, calcareous soils prime for farmland. A typical profile for LvB is a silty clay top soil (A horizon) to approximately 15 cm depth, a silty clay B horizon to approximately 110 cm, and a second division of the B horizon to approximately 160 cm below surface. As soil is the result of a number of complexly related variables, one could expect this typical profile to change with space.

2.3 Vegetation and Wildlife

Flora and fauna of the ecotone include species that are representative of both the Edwards Plateau and the South Texas Plains as well as endemic species (Blair 1950). Major game species of the region include whitetail deer, javelina, and several species of bird, and antelope and bison were periodically present further back in history. The region’s natural vegetation is typically a grassland-woodland-forest mosaic (Ellis et al. 1995).

2.4 Current and Past Climates

The project site in San Antonio is classified as Humid subtropical (Cfa), but it is found near the current transition from Subtropical Subhumid to Subtropical Steppe, with diminishing precipitation from east to west. The location typically has long hot summers and mild winters, and precipitation is bimodal with peaks in the late spring and early fall.

Because most cultural resources originate in the period of time between the Last Glacial Maximum and the colonization of the western hemisphere by emigrants of the European continent, it is necessary to consider past climates, too. Since past climatic conditions cannot be observed (i.e., measurements did not begin in this region until the late 19th century), we rely on proxy data to reconstruct past conditions. Proxy data do not directly reflect past environments, but they can be used to infer conditions under which they form (Ellis et al. 1995).
Based on fossil pollens (Bousman 1998), phytoliths (Joines 2005), microfaunal remains (Toomey 1993), soil chemistry (Nordt et al. 2002), and speleothems (Musgrove et al. 2001), it is pretty clear that climatic conditions of the past approximately 20,000 years have steadily become warmer and increasingly arid with several punctuated episodes. Transition from the Pleistocene to the Holocene at approximately 11,700 years ago was a marked increase in warmth and aridity. In addition to increased warmth and aridity, the Holocene is characterized by increasing seasonal variation of temperatures and precipitation. Peak warmth and aridity occurred during the mid- to late-Holocene Altithermal. Following the Altithermal, conditions similar to the early-Holocene returned, but warmth and aridity increase to the present.

3.0 CULTURAL HISTORY

Generally, the cultural chronology of Central Texas can be divided into two periods, Prehistoric and Historic. The boundary between the two periods is marked by the introduction of Europeans into the Western Hemisphere. The following description of Central Texas’ cultural history is a gross compilation of a vast suite of data and interpretations (cf. Collins 1995, 2004).

3.1 Prehistoric

The Prehistoric people of Central Texas were primarily hunter-gatherers. Through the last 75-plus years of archaeological research in the region, identifiable and repeated patterns in artifact assemblages have indicated major shifts in subsistence strategies and technology through time. As a result, the Prehistoric period now has three subdivisions: Paleoindian, Archaic, and Late Prehistoric.

The Paleoindian period (ca. 12,500-8800 years ago) includes the earliest human occupation of North America, which extends back into the late Pleistocene. During this period of time, people hunted large game, but they generally had a broad diet and consumed much of what they could. This included small game and aquatic creatures all the way up to mega fauna that went extinct with the close of the Pleistocene (i.e., mammoth, mastodon, bison, horse, camel, etc.). Technological traditions further subdivide the Paleoindian period into Early and Late.

The Archaic period (ca. 8800-1250 years ago) of Central Texas was the longest period in prehistory, and it is generally marked by the introduction of hot rock cooking in addition to the proliferation of a wide variety of diagnostic projectile points. Cooking with fire-heated rocks developed with increased reliance on plant foods, which may have been a response to diminishing game resources and ultimately climatic change/variation. This is not to say that human agency, and ultimately culture, did not play an important role in the shift of economic and subsistence strategies. The Archaic period is subdivided into Early-, Middle-, and Late-Archaic periods, each with a slight variation in response to cultural shifts and ambient conditions.
The Late Prehistoric (ca. 1250-250 years ago) was a relatively brief period, but it was marked by a shift in weapon technology: the introduction of the bow-and-arrow. Like the Archaic, the Late Prehistoric people utilized hot rock cooking to process plants to edible forms. There also appeared to be increasing contact among groups, which resulted in increased trade of materials and evident competition over resources.

3.2 Historic

Sometimes referred to as Protohistoric, Spanish Entradas, or expeditions, mark the onset of western influence in the New World. These explorations effectively scouted the new land and resulted in the settlement and establishment of missions spread throughout what has become northern Mexico and Texas. Through the Historic period, European populations and influence steadily increased as native populations steadily diminished.

4.0 METHODS

Methods described below were employed to identify and characterize cultural resources present within the project site to the extent practicable utilizing current field methods.

4.1 Desktop Review

To search for known cultural resources in proximity to the project site, reviews of the Texas Archeological Sites Atlas, the list of State Archeological Landmarks, and the National Register of Historic Places were performed. Historical maps and aerial images that include the project site were reviewed for any evidence that the location contained buildings that may be considered historic (greater than 50 years old). And additionally, review of the area’s deed history was performed using the Bexar County Clerk’s property records search online.

4.2 Backhoe Trenching

At the request of COSA OHP, Terracon mechanically excavated two backhoe trenches on the project site. A flat-blade (i.e., rather than toothed) bucket was used to excavate approximately 50 cm arbitrary levels from trenches that had approximate dimensions of 100 cm width, 1.5 to 2.2 m depth, and 7 to 12 m length. Once completed and documented, the excavated area was immediately backfilled.

4.3 Intensive Pedestrian Survey

To evaluate the horizontal extent of historical artifacts found at or near the surface in backhoe trench excavations and to delineate a new historical archaeological site, an intensive pedestrian survey tested boundary areas of the project site. Three shovel tests were excavated to varying depths that targeted the interface between gravel parking lot fill and a shallowly buried former surface. All sediment was excavated in arbitrary 20 cm levels to depth, and all excavated sediment was passed through ¼-inch hardware mesh. Characteristics and contents of shovel
tests were recorded by photographs and forms/notes, and upon completion all materials, including artifacts and sediment, were backfilled. The remainder of the worksite surface was systematically surveyed. This modified approach to the Minimum Survey Standards set forth by the Council of Texas Archeologists and adopted by the THC were agreed upon by the author and the COSA Assistant City Archaeologist prior to conducting the fieldwork.

4.4 Artifact Analysis

Artifacts encountered through the excavation of backhoe trenches and shovel tests were described and photographed on-site, and then returned to their respective excavations at the time of backfilling. The importance of the artifacts is in their capacity to relate temporal and other information about the former occupants of the site, and as such they are categorized according to their material and subdivided by unique/diagnostic characteristics.

Bottle glass has many diagnostic traits that offer varying amounts of information that depends upon the preservation of a given vessel (Lindsey 2014). Most glass artifact encountered during the current project were small fragments, and so color was the most diagnostic characteristic when maker’s marks were not present. Aqua colored glass is a relic of the early 20th century, variations on colorless glass present at the site represents early 20th century, and brown bottle glass is also diagnostic of the same time period (Lindsey 2014). A very low amount of ceramic artifacts were encountered, all representative of early 20th century manufacture: whiteware (Stelle 2001), and Albany Slip stoneware (Greer 2005). Structural debris, including wire nails, which rose to prominence in the early 20th century, were also encountered in the field.

The cultural material observed, along with approximate dimensions and other generalizations of the archaeological site, were recorded with the Texas Archaeological Research Laboratory and given a new trinomial, 41BX2017.

5.0 RESULTS

5.1 Desktop Review

Desktop review of the project area showed that no previous survey had been conducted and no known historic properties were present within the project site. Across Probandt Street, and farther east across the San Antonio River, however, are two NRHP Districts, Blue Star Street Industrial Historic District and South Alamo Street-South Mary’s Street Historic District, respectively. North of the project site and adjacent to the above named NRHP Districts is another prominent NRHP District, King William Historic District. Additionally, the San Pedro Ditch or acequia once paralleled Flores Street south from San Pedro Springs to the San Antonio River near Mission Concepcion, and the project site is relatively close to the historical waterway.
The Blue Star Street Industrial Historic District is an early 20th century warehouse complex that serviced the adjacent San Antonio and Aransas Pass Railway. South Alamo Street-South St. Mary's Street Historic District is a neighborhood developed in the late 19th and early 20th centuries as San Antonio's urban area expanded southwards to the San Antonio River. The King William Historic District was initially a neighborhood enclave of German settlers in the middle 19th century, and it became a desirable residential location for the affluent and prominent families of the late 19th century and early 20th century. Many of the residential structures in the district are NRHP eligible on their own.

The current project site appears to have been urbanized concomitantly with the neighborhood that now composes the South Alamo Street-South St. Mary's Street Historic District, though none of the contemporary residential structures stand. The project site is at or near the edge of two Augustus Koch Birds Eye View maps of San Antonio, 1873 and 1886. In the earlier map, it appears that the project site is undeveloped, and in the later, there is development beginning to extend south of the river in the direction of the railway. By 1901-1903, as indicated on the 1904 USGS 1:62,500 San Antonio Topographic Quadrangle map, there are a number of structures present on the project site. On the Sanborn Fire Insurance Map of 1912, the project site is divided nearly in half, with residences to the west and a large lot and commercial structure to the east. By the 1951 Sanborn, however, the residential structures are cleared and industrial/commercial structures stand on the project site. And, by the 1971 Sanborn publication, the current configuration/footprint of industrial/commercial construction is present.

Deed records tie the property back into the Republic of Texas, when John Riddle of San Antonio granted a tract of land including the project site to Lecomte de Watine in 1846 (C2:300). Twenty five years (ca. 1871) and one landowner in between (i.e., E. A. Bessieres [W1:214]), the project site property was bought by the Probandt family (W1:214). The Probandt family split much of the property up, conveying access to the San Pedro Ditch with each parcel. In 1885, the Gittinger family purchased the property and water rights from the Probandts (42:450). In the early to middle 20th century, the Gilbert family accumulated the property that is now the project site from the Gittinger family (2233:459), the Taboada family (4625:235), and Texas-Arizona Motor Freight, Inc. (5131:362), and in 2003 the current owners bought the property from the Gilbert family (10038:712). Given the history reflected in deed records and illustrated by Koch, residential development of the site followed ownership by the Probandt family, and the phase of residential land use was relatively brief.

5.2 Backhoe Scraping

Two backhoe trenches were excavated across the 2.3-acres project site—one with approximate dimensions of 1 m width, 12 m length, and 2 m depth extending from the northeast corner of the slab foundation towards the northeast corner of the project site and oriented perpendicular to the general flow of the San Antonio River; and the second with approximate dimensions of 1 m width, 7 m length, and 1.5 m depth extending southwards from the southeastern corner of the slab foundation.
The first backhoe trench yielded abundant historical debris that included bottle glass fragments, one whiteware sherd, many wire nails, miscellaneous metal fragments, bricks, and two fragmentary cedar wood posts and cement with their impressions. In profile, all of the artifacts came from a layer/package of sediment that was found beneath the parking lot base, 30-75 cm below surface. This artifact-rich zone pinched to a thin layer northeasterly, and significantly less artifacts were observed in the northeast end of the trench. By arbitrary 20 cm level, the upper level within the zone contained much more, including the cement and wood found at the contact between base and soil. One cement base, however, was exposed in situ at approximately 75 cm below surface, and it was clearly laid into a conical excavation. A near-complete small bottle was recovered from the back dirt, and the “Absorbine Jr.” embossing on the bottom dates the manufacture to post-1903 (DSE Healthcare 2014). Absorbine Jr. is still currently offered as topical relief for sore muscles, arthritis pain, and a variety of maladies. Another bottle with “San Antonio” embossed on its base also had an applied color label, which dates the bottle to the first half of the 20th century (Lindsey 2014). Below the artifact-rich zone, a natural soil profile yielded no cultural material of any type. A marly or extremely calcareous zone was encountered at approximately 1.5 meters below surface, and excavations ended thereafter.

The second backhoe trench had a similar yet compressed profile in comparison to the first trench. That is, beneath parking lot base, a historic artifact-rich zone contained bottle glass fragments, one Albany Slip stoneware sherd, one whiteware sherd, wire nails, metal fragments, bricks, sawn bone, and plastic. The artifact bearing zone at this location on the project site, however, was observed from approximately 15-40 cm below surface. No artifacts were observed beyond approximately 40 cm below surface. Again, below the cultural zone ensued a natural soil profile, and marly or extremely calcareous sediment was encountered at approximately 1.5 below surface.

5.3 Intensive Survey

To delineate the extent of the scatter of historic cultural material, three shovel tests were excavated and the project site surface systematically surveyed. The shovel tests focused on areas between the trenches, and pedestrian survey intensified on the margins where parking lot activity was too heavy for shovel test excavation (i.e., driving lanes and occupied parking spaces).

Shovel Test number 1 (ST1) probed the southern boundary adjacent to Clay Street, and it contained a six-inch long, ½-inch wide bolt in the upper 10 cm. It was the only artifact observed in the 30 cm excavated. No parking lot base was encountered in ST1. Shovel Test 2 (ST2) probed the southeastern corner of the project area. It did not expose any parking lot base, and it was the only excavation devoid of cultural material. Shovel Test 3 (ST3) was excavated on the northern boundary of the project site. It contained approximately 40 cm of parking lot base, and it contained a small amount of aqua glass fragments, plastic, and metal beneath the base.
In the area near ST3, along the northern boundary of the project area and in association with entrances to the property, there were cedar posts, very similar in size and otherwise appearance to those found in the first backhoe trench, marking the property line. On the south side of the central slab foundation, bricks that were similar in size and material to those found in backhoe trench excavations were found on the surface.

5.4 Site 41BX2017

With all of the cultural material encountered in excavations and on the surface, and what was learned from archival research, a new historical archaeological site was identified, 41BX2017 on record at the Texas Archeological Research Laboratory. Site 41BX2017 is characterized as an early 20th century residential and industrial/commercial occupation. From archival data, and corroborated by the age of artifacts, the site was initially occupied during the very early 1900s. Subsequent uses of the land, however, effectively erased previous iterations, and thus the site is now a historical, urban palimpsest. No significant or intact features of any age were observed, and thus 41BX2017 is thought to have little research potential if any.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Under guidance and jurisdiction of the COSA Office of Historic Preservation and Assistant City Archaeologist, a modified intensive survey of 2.3 acres was performed at a location in southern central San Antonio adjacent to the San Antonio River. Backhoe trenches were excavated to probe the alluvial terrace deposits for deeply buried cultural resources, and those excavations yielded cultural materials that culminated in the identification of 41BX2017.

Site 41BX2017 is a scatter of early 20th century historical material that blankets the project site beneath a veneer of parking lot base. No intact features were encountered, and archival research yielded no data pertaining to important people, places, or events specific to this project site. Therefore, it is Terracon’s opinion that 41BX2017 is not eligible for State Archeological Landmark status or National Register of Historic Places, and Terracon recommends that development of the property proceed without further investigations of cultural resources.
7.0 REFERENCES CITED

Barnes, V. E.
1982 *Geologic atlas of Texas, San Antonio Sheet.* Bureau of Economic Geology, University of Texas at Austin.

Bousman, C. Britt

Collins, Michael B.

Crumley, Carole L. (editor)

DSE Healthcare Solutions

Ellis, Linda Wootan, G. Lain Ellis, and Charles D. Frederick

Greer, Georgeanna H.

Joines, Jason Paul
2005 *17,000 Years of Climate Change: The Phytolith Record from Hall’s Cave, Texas.* Unpublished Master’s thesis, Department of Biology, Oklahoma State University, Stillwater.

Lindsey, Bill
Musgrove, MaryLynn, Jay L. Banner, Larry E. Mack, Deanna M. Combs, Eric W. James, Hai Cheng, and R. Lawrence Edwards

Nordt, Lee C., Thomas W. Boutton, John S. Jacob, and Rolfe D. Mandel
2002 C4 Plant Productivity and Climate-CO2 Variations in South-Central Texas during the Late Quaternary. *Quaternary Research* 58: 182-188.

Spearing, Darwin R.

Stelle, Lenville J.
http://virtual.parkland.edu/lstelle1/len/archguide/documetns/arcguide.htm

Taylor, F. B., R. B. Hailey, and D. L. Richmond

Toomey, Rickard S., III
1993 *Late Pleistocene and Holocene Faunal and Environmental Changes at Hall’s Cave, Kerr County, Texas*. Unpublished Ph.D. dissertation, Department of Geography, University of Texas at Austin.
<table>
<thead>
<tr>
<th>Zone</th>
<th>Depth (cmbs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0-30</td>
<td>Very pale brown (10YR 7/4) loam, granular, 75% coarse fragments, engineered base topped with asphalt, abrupt smooth lower boundary</td>
</tr>
<tr>
<td>II</td>
<td>30-75</td>
<td>Dark gray (10YR 4/1) silty clay, moderate medium blocky structure, 10% coarse fragments, abundant historical debris, clear smooth to wavy lower boundary</td>
</tr>
<tr>
<td>III</td>
<td>75-100</td>
<td>Dark gray (10YR 4/1) silty clay, moderate medium blocky structure, <10% coarse fragments, few to no historical debris, gradual smooth lower boundary</td>
</tr>
<tr>
<td>IV</td>
<td>100-140</td>
<td>Brown (7.5YR 4/3) silty clay, moderate medium blocky structure, <10% coarse fragments, fine CaCO3 filaments, clear smooth lower boundary</td>
</tr>
<tr>
<td>V</td>
<td>140-220+</td>
<td>Yellow (10YR 8/6) clay, strong coarse blocky structure, <20% coarse fragments, common coarse CaCO3 nodules approaching cementation—Stage II-III carbonate development</td>
</tr>
<tr>
<td>Zone</td>
<td>Depth (cmbs)</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>I</td>
<td>0-15</td>
<td>Light gray (10YR 7/2) loam, granular, 75% coarse fragments, engineered base topped with gravel, abrupt smooth lower boundary</td>
</tr>
<tr>
<td>II</td>
<td>15-40</td>
<td>Black (10YR 4/1) silty clay, weak fine blocky structure, <20% coarse fragments, common historical debris, clear wavy lower boundary</td>
</tr>
<tr>
<td>III</td>
<td>40-65</td>
<td>Dark grayish brown to brown (10YR 4/1-4/2) silty clay, moderate medium blocky structure, <10% coarse fragments, no historical debris, gradual smooth lower boundary</td>
</tr>
<tr>
<td>IV</td>
<td>65-100</td>
<td>Brown (7.5YR 4/2) silty clay, moderate medium blocky structure, <5% coarse fragments, fine CaCO3 filaments, clear smooth lower boundary</td>
</tr>
<tr>
<td>V</td>
<td>100-140+</td>
<td>Light yellowish brown (10YR 6/4) clay, strong medium blocky structure, 15% coarse fragments, common coarse CaCO3 nodules approaching cementation—Stage II-III carbonate development</td>
</tr>
<tr>
<td>Shovel Test 1</td>
<td>Depth</td>
<td>Sediment Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>0-20</td>
<td>10YR 7/2 gravelly loam (0~10 cm), 7.5YR 2.5/1 silty clay</td>
<td>1 large bolt in upper 10 cm</td>
</tr>
<tr>
<td>20-40</td>
<td>7.5YR 2.5/1 silty clay</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shovel Test 2</th>
<th>Depth</th>
<th>Sediment Description</th>
<th>Artifacts</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>10YR 4/1 silty clay</td>
<td>None</td>
<td>Southeast corner of project site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10YR 4/1 silty clay</td>
<td>None</td>
<td>Grassy, unpaved area—no parking lot base encountered</td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>10YR 4/1 silty clay</td>
<td>None</td>
<td>Terminated at approximately 30 cm NO ARTIFACTS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shovel Test 3</th>
<th>Depth</th>
<th>Sediment Description</th>
<th>Artifacts</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>10YR 7/2 gravelly loam</td>
<td>None</td>
<td>Northern boundary of project site near contact between paved parking lot and grassy buffer</td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>10YR 7/2 gravelly loam</td>
<td>None</td>
<td>Built-up—adjacent sidewalk and street are approximately 75 cm below level</td>
<td></td>
</tr>
<tr>
<td>40-60</td>
<td>10YR 4/1 silty clay</td>
<td>Several small glass sherds, plastic, pull tab metal</td>
<td>Terminated approximately 10 cm below contact between parking lot base and soil below</td>
<td></td>
</tr>
</tbody>
</table>

Shovel tests were excavated to delineate the site, 41BX2017, identified during backhoe trench excavation.
Photo #1: View of BHT 1 facing north.

Photo #2: BHT 1 amidst excavation.
Photo #3: BHT 1 south wall profile exposure. The dark circular patch in the upper right is where a cedar post laying horizontally was removed.

Photo #4: Glass artifacts from BHT 1.
Photo #5: Cedar post and cement from BHT 1.

Photo #6: Metal artifacts from BHT 1.
Photo #7: View of BHT 2 facing east.

Photo #8: BHT 2 west wall profile.
Photo #9: Metal artifacts from BHT 2.

Photo #10: Glass artifacts from BHT 2.
Photo #10: ST1 excavation at depth with metal bold pictured right.

Photo #10: View of ST2 excavation at depth.
Photo #10: ST3 excavation at depth.

Photo #10: Artifacts from ST3.
Photo #10: Cedar posts marking property line at entrance to lot.