INTENSIVE CULTURAL RESOURCES SURVEY OF THE BRENTHURST PHASE I 37-ACRE PROJECT
BEXAR COUNTY, TEXAS

Prepared for

INTCO-DOMINION PARTNERSHIP
14855 Blanco Road, Suite 305
San Antonio, Texas 78216

Prepared by

Ken Lawrence

SWCA ENVIRONMENTAL CONSULTANTS
4407 Monterey Oaks Blvd.
Building 1, Suite 110
Austin, Texas 78749
www.swca.com

SWCA Project Number 14241-224-AUS
SWCA Cultural Resources Report No. 2008-148

April 14, 2008
ABSTRACT

On behalf of Intco-Dominion Partnership, SWCA Environmental Consultants (SWCA) conducted an intensive cultural resources survey of the 37-acre Brethurst Phase I project area in Bexar County, Texas. Work was done to satisfy requirements of the San Antonio Historic Preservation Office (HPO) per the City of San Antonio’s Historic Preservation and Design Section of the Unified Development Code (Article 6 35-360 to 35-634). The project area is in northern San Antonio, located east of Interstate Highway (IH) 10 and north of Loop 1604 within the Dominion Residential area.

The investigations included a background literature and records review and an intensive pedestrian survey with subsurface investigations. The survey included 16 shovel tests placed in areas that had the highest potential for containing buried cultural materials with good integrity. No cultural materials were identified within any of the shovel test excavations and no features, or standing structures were observed on the surface of the project area. However, several isolated finds (i.e., tin cans) from the early to middle twentieth century were encountered during the investigation. For various reasons, these isolated artifacts are not considered significant or warrant designation as a formal site. Overall, the survey revealed the project area to be a rocky upland setting with prevalent limestone bedrock outcroppings. Accordingly, no significant cultural resources will be affected by any construction activities within the project area. SWCA recommends no further archaeological investigations within the project area.

No artifacts were collected; therefore, nothing was curated.
MANAGEMENT SUMMARY

PROJECT TITLE: Intensive Cultural Resources Survey of the Brenthurst Phase I 37-Acre Project, Bexar County, Texas

SWCA PROJECT NUMBER: 14241-224

PROJECT DESCRIPTION: On behalf of Intco-Dominion, SWCA conducted an intensive cultural resource investigation of the 37-acre Brenthurst Phase I project area. The work was done to satisfy requirements of the City of San Antonio Historic Preservation Office (HPO). These investigations included a background review and a pedestrian survey with subsurface investigations.

LOCATION: The project area is in northern San Antonio, Bexar County, Texas, roughly 3.6 miles due north of the Loop 1604 and east of Interstate Highway (IH) 10 intersection. The property is composed of two tracts that total 37 acres. The project area is shown on the Camp Bullis USGS topographic quadrangles.

NUMBER OF ACRES SURVEYED: 37

DATES OF WORK: April 2, 2008

PURPOSE OF WORK: Work was done to satisfy requirements of the San Antonio Historic Preservation Office (HPO) per the City of San Antonio’s Historic Preservation and Design Section of the Unified Development Code (Article 6 35-360 to 35-634).

NUMBER OF SITES: None.

CURATION: No artifacts were collected during the fieldwork investigations; thus, nothing was curated.

COMMENTS: The project area is almost exclusively a rocky bedrock outcrop with minor areas of shallow, rocky, silty clay loam soils. The survey did encounter scattered isolated finds consisting of early to middle twentieth century debris. However for various reasons, these artifacts are not considered significant or warrant formal designation as an archaeological site. Accordingly, no significant cultural resources will be affected by any construction activities within the project area. No additional archaeological investigations are recommended for the project area.
INTRODUCTION

On behalf of Intco Dominion Partnership (Dominion), SWCA Environmental Consultants (SWCA) conducted an intensive cultural resources survey of the 37-acre Brenhurst Phase I project area in northern Bexar County, Texas. The work was done to satisfy requirements of the City of San Antonio’s Historic Preservation Office (HPO). These investigations included a background review and a pedestrian survey with subsurface investigations.

SWCA archaeologists John Lowe and Ken Lawrence conducted the fieldwork on April 2, 2008.

DEFINITION OF STUDY AREA

The proposed project area is located 3.6 miles north of Loop 1604 and about 0.6 miles east of Interstate Highway (IH) 10 in northern San Antonio, Bexar County, Texas (Figure 1). The 37-acre project area is located 3.6 miles due north of Loop 1604 and IH 10 intersection. The project area consists of two tracts (Tracts 1 and 3) that are separated by a roadway, currently under construction, that generally trends west to east. The northwestern tract (Tract 1) consists of 28.44 acres and is bounded by the aforementioned roadway on the south, an intermittent drainage on the west, and property fence lines on the north and east sides. The southeastern tract (Tract 3) is composed of 6.77 acres and is bounded by the aforementioned roadway on the north and a property fence line on the west side. The east and southern boundaries of Tract 3 are open.

Although the depths of impacts for the project construction have not been indicated, current construction observed near the property is over three feet in depth (Figure 2). The project area is situated in an upland setting positioned along the slopes overlooking small tributary drainages of Leon Creek located about 0.5 miles to the southwest (Figure 1). The overwhelming majority of the project area occupies rocky limestone upland terrain with soils of little vertical depth and broad areas of exposed bedrock (Figure 3). The project area contains thick vegetation with an overstory of a few oaks and cedar, and a dominant understory of juniper and various shrubs (Figure 4). Ground visibility within the project area ranged from a low of 35 percent to a high of 100 percent, but the visibility was typically about 70 percent.

The geology of the project area is exclusively mapped as Lower Cretaceous-period Upper Glen Rose Formation limestone divided (Barnes 1983). This formation is composed of thinly bedded limestone with dolomite, and marl with differing rates of resistance forming a stairstep topography. The Upper Glen Rose Formation is roughly 400 feet thick.

In order of predominance, the soils of the project area are mapped as Bracket-Tarrant association (hilly), Tarrant Association (gently undulating), and Krum Complex. Specifically, the Bracket-Tarrant association (8–30 percent slopes) is described as shallow to very shallow soils over limestone. The Tarrant association (15–30 percent slopes) is described as occupying ridgetops and hilly to steep slopes with gravelly clay loams and occasional outcrops of hard limestone. The Krum Complex (2–5 percent) is composed of all the soils within the narrow upland valleys and occupies footslopes below Tarrant and Brackett soils (Taylor et al. 1991).

CULTURAL SETTING

The proposed project area falls within Central Texas Archeological Region (Pertulla 2004). Although the archaeological regions are not absolute, they do generally reflect recognized biotic communities and physiographic areas in Texas (Pertulla 2004:6). The Central Texas
Figure 1. Project location map.
Figure 2. Profile exposure near project area. Note shallow soils over degrading bedrock.
Figure 3. Overview of rocky upland setting of project area.

Figure 4. Overview photo of vegetation and drainage within project area; facing south.
Region, as its name implies, is in the center of Texas and covers the Edwards Plateau and portions of the Blackland prairie east of the Edwards Plateau. The following synopses provide basic culture histories of the Central Texas region.

The archaeological record of the Central Texas region is known from decades of investigations of stratified open air sites and rockshelters throughout the Edwards Plateau, its highly dissected eastern and southern margins, and the adjoining margins of physiographic regions to the east and south (see Collins [2004] for review). Traditionally, the Central Texas archaeological area has included the Balcones Canyonlands and Blackland Prairie—that is, north of San Antonio (e.g., Prewitt 1981; Suhm 1960). These two areas are on the periphery of the Central Texas archaeological area, and their archaeological records and projectile point style sequences contain elements that suggest influences from and varying degrees of contact over time with other areas such as the Lower Pecos and Gulf Coastal Plain (Collins 2004; Johnson and Goode 1994). Archaeological sites in these two areas in Bexar County area have contributed important information include the Richard Beene site at Applewhite Reservoir (McGraw and Hindes 1987; Thoms et al. 1996; Thoms and Mandel 1992), the Cibolo Crossing site at Camp Bullis (Kibler and Scott 2000), the Panther Springs Creek site in Bexar County (Black and McGraw 1985), the Jonas Terrace site in Medina County (Johnson 1995), the Camp Pearl Wheat site in Kerr County (Collins et al. 1990), 41BX1 in Bexar County (Lukowski 1988), 41BX300 in Bexar County (Katz 1987), and several sites at Canyon Reservoir (Johnson et al. 1962). For more complete bibliographies concerning archaeological work done in the region, see Black (1989), Collins (1995), and Johnson and Goode (1994).

Paleoindian Period

Surficial and deeply buried sites, rockshelter sites, and isolated artifacts represent Paleoindian (11,500–8,800 B.P.) occupations of the Central Texas region (Collins 2004:116). The period is often described as having been characterized by small but highly mobile bands of foragers who were specialized hunters of Pleistocene megafauna. But Paleoindians probably used a much wider array of resources (Meltzer and Bever 1995:59), including small fauna and plant foods. Faunal remains from Kincaid Rockshelter and the Wilson-Leonard site (41WM235) support this view (Bousman 1998; Collins 1998; Collins et al. 1989). Longstanding ideas about Paleoindian technologies also are being challenged.

Collins (2004) divides the Paleoindian period into early and late subperiods. Two projectile point styles, Clovis and Folsom, are included in the early subperiod. Clovis chipped stone artifact assemblages, including the diagnostic fluted lanceolate Clovis point, were produced by bifacial, flake, and prismatic-blade techniques on high-quality and oftentimes exotic lithic materials (Collins 1990). Along with chipped stone artifacts, Clovis assemblages include engraved stones, bone and ivory points, stone bolas, and ochre (Collins 2004:116; Collins et al. 1992). Clovis points are found evenly distributed along the eastern edge of the Edwards Plateau, where the presence of springs and outcrops of chert-bearing limestone are common (Meltzer and Bever 1995:58). Sites within the area yielding Clovis points and Clovis-age materials include Kincaid Rockshelter (Collins et al. 1989) and San Macros Springs (Takac 1991). A probable Clovis polyhedral blade core and blade fragment was found at the Greenbelt site in San Antonio (Houk et al. 1997). Analyses of Clovis artifacts and site types suggest that Clovis peoples were well-adapted, generalized
hunter-gatherers with the technology to hunt larger game but not solely rely on it.

In a survey of fluted points reported from throughout the state, Bever and Meltzer (2007:72) identified 151 Clovis points recovered from the counties comprising the Central Texas region. However, only four Clovis points have been recorded for Bexar County (Bever and Meltzer 2007:67). Bever and Meltzer (2007:91) also determined that roughly 76 percent of the Clovis point raw material originated from the Edwards Plateau, but the distribution suggests the Clovis groups focused on the Nueces-Guadalupe Plain in the South Texas region.

In contrast, Folsom tool kits—consisting of fluted Folsom points, thin unfluted (Midland) points, large thin bifaces, and end scrapers—are more indicative of specialized hunting, particularly of bison (Collins 2004:117). Folsom points have been recovered from Kincaid Rockshelter (Collins et al. 1989). Folsom point distributions, both the frequency and spatial patterning, differ from the Clovis patterns, suggesting a shift in adaptation patterns (Bever and Meltzer 2007; Meltzer and Bever 1995:60 and 74). Folsom points appear more frequently in the coastal plain as well as the South Texas plain, located to the south and southeast of Bexar County. As Folsom points are almost exclusively found in plains settings (they are conspicuously lacking in the Edwards Plateau), the technology perhaps marks a more specialized adaptation, likely to a more intensive reliance on ancient bison.

Postdating Clovis and Folsom points in the archaeological record are a series of dart point styles (primarily unfluted lanceolate darts) for which the temporal, technological, or cultural significance is unclear. Often, the Plainview type name is assigned these dart points, but Collins (2004:117) has noted that many of these points typed as Plainview do not resem-

ble Plainview type-site points in thinness and flaking technology. Recent investigations at the Wilson-Leonard site (see Bousman 1998) and a statistical analysis of a large sample of unfluted lanceolate points by Kerr and Dial (1998) have shed some light on this issue. At Wilson-Leonard, the Paleoindian projectile point sequence includes an expanding-stem dart point termed Wilson, which dates to ca. 10,000–9,500 B.P. Postdating the Wilson component is a series of unfluted lanceolate points referred to as Golondrina-Barber, St. Mary’s Hall, and Angostura, but their chronological sequence is poorly understood. Nonetheless, it has become clear that the artifact and feature assemblages of the later Paleoindian subperiod appear to be Archaic-like in nature and in many ways may represent a transition between the early Paleoindian and succeeding Archaic periods (Collins 2004:118).

Archaic Period

The Archaic period for Central Texas dates from ca. 8,800 to 1,300–1,200 B.P. (Collins 2004:119–121) and generally is believed to represent a shift toward hunting and gathering of a wider array of animal and plant resources and a decrease in group mobility (Willey and Phillips 1958:107–108). In the eastern and southwestern United States and on the Great Plains, development of horticultural-based, semisedentary to sedentary societies succeeds the Archaic period. In these areas, the Archaic truly represents a developmental stage of adaptation as Willey and Phillips (1958) define it. For Central Texas, this notion of the Archaic is somewhat problematic. An increasing amount of evidence suggests that Archaic-like adaptations were in place before the Archaic (see Collins 2004:118, 1998; Collins et al. 1989) and that these practices continued into the succeeding Late Prehistoric period (Collins 1995:385; Prewitt 1981:74). In a real sense, the Archaic period of Central Texas region is not a developmental stage, but an arbi-
trary chronological construct and projectile point style sequence. Establishment of this sequence is based on several decades of archaeological investigations at stratified Archaic sites along the eastern and southern margins of the Edwards Plateau. Collins (1995, 2004) and Johnson and Goode (1994) have divided this sequence into three parts—early, middle, and late—based on perceived (though not fully agreed upon by all scholars) technological, environmental, and adaptive changes.

Early Archaic (8,800–6,000 B.P.) sites are small, and their tool assemblages are diverse (Weir 1976:115–122), suggesting that populations were highly mobile and densities low (Prewitt 1985:217). It has been noted that Early Archaic sites are concentrated along the eastern and southern margins of the Edwards Plateau (Johnson and Goode 1994; McKinney 1981). This distribution may indicate climatic conditions at the time, given that these environments have more reliable water sources and a more diverse resource base than other parts of the region. Early Archaic projectile point styles include Hoxie, Gower, Wells, Martindale, and Uvalde. Clear Fork and Guadalupe bifaces and a variety of other bifacial and unifacial tools are common to Early Archaic assemblages. Construction and use of rock hearths and ovens, which had been limited during late Paleoindian times, became commonplace. The use of rock features suggests that retaining heat and releasing it slowly over an extended period were important in food processing and cooking and reflects a specialized subsistence strategy. Such a practice probably was related to cooking plant foods, particularly roots and bulbs, many of which must be subjected to prolonged periods of cooking to render them consumable and digestible (Black et al. 1997:257; Wandsnider 1997; Wilson 1930). Botanical remains, as well as other organic materials, are often poorly preserved in Early Archaic sites, so the range of plant foods exploited and their level of importance in the overall subsistence strategy are poorly understood. But recovery of charred wild hyacinth (Camassia scilloides) bulbs from an Early Archaic feature at the Wilson-Leonard site provides some insights into the types of plant foods used and their importance in the Early Archaic diet (Collins et al. 1998). Significant Early Archaic sites include the Richard Beene site in Bexar County (Thoms and Mandel 1992), the Camp Pearl Wheat site in Kerr County (Collins et al. 1990), and the Jetta Court site in Travis County (Wesolowsky et al. 1976).

During the Middle Archaic period (6,000–4,000 B.P.), the number and distribution of sites, as well as their size, probably increased as population densities grew (Prewitt 1981:73; Weir 1976:124, 135). Macrobands may have formed at least seasonally, or more small groups may have used the same sites for longer periods (Weir 1976:130–131). Development of burned rock middens toward the end of the Middle Archaic suggest a greater reliance on plant foods, although tool kits still imply a considerable dependence on hunting (Prewitt 1985:222–226). Middle Archaic projectile point styles include Bell, Andice, Taylor, Baird, Nolan, and Travis. Bell and Andice points reflect a shift in lithic technology from the preceding Early Archaic Martindale and Uvalde point styles (Collins 2004:119). Johnson and Goode (1994:25) suggest that the Bell and Andice darts are parts of a specialized bison-hunting tool kit. They also believe that an influx of bison and bison-hunting groups from the Eastern Woodland margins during a slightly more mesic period marked the beginning of the Middle Archaic. Though no bison remains were recovered or present, Bell and Andice points and associated radiocarbon ages were recovered from the Cibolo Crossing (Kibler and Scott 2000), Panther Springs Creek, and Granberg II (Black and McGraw 1985) sites in Bexar County. Bison popula-
tions declined as more-xeric conditions returned during the late part of the Middle Archaic. Later Middle Archaic projectile point styles represent another shift in lithic technology (Collins 2004:120; Johnson and Goode 1994:27). At the same time, a shift to more-xeric conditions saw the burned rock middens develop, probably because intensified use of a specific resource (geophytic or xerophytic plants) or resource patches meant the debris of multiple rock ovens and hearths accumulated as middens on stable to slowly aggrading surfaces, as Kelley and Campbell (1942) suggested many years ago. Johnson and Goode (1994:26) believe that the dry conditions promoted the spread of yuccas and sotols, and that it was these plants that Middle Archaic peoples collected and cooked in large rock ovens.

During the succeeding Late Archaic period (4,000 to 1,300–1,200 B.P.), populations continued to increase (Prewitt 1985:217). Within stratified Archaic sites such as Loeve-Fox, Cibolo Crossing, and Panther Springs Creek, the Late Archaic components contain the densest concentrations of cultural materials. Establishment of large cemeteries along drainages suggests certain groups had strong territorial ties (Story 1985:40). A variety of projectile point styles appeared throughout the Late Archaic period. Johnson and Goode (1994:29–35) divide the Late Archaic into two parts, Late Archaic I and II, based on increased population densities and perceived evidence of Eastern Woodland ceremonial rituals and religious ideological influences. Middle Archaic subsistence technology, including the use of rock and earth ovens, continued into the Late Archaic period. Collins (2004:121) states that, at the beginning of the Late Archaic period, the use of rock ovens and the resultant formation of burned rock middens reached its zenith and that the use of rock and earth ovens declined during the latter half of the Late Archaic. There is, however, mounting chrono-

logical data that midden formation culminated much later and that this high level of rock and earth oven use continued into the early Late Prehistoric period (Black et al. 1997:270–284; Kleinbach et al. 1995:795). A picture of prevalent burned rock midden development in the eastern part of the Central Texas region after 2,000 B.P. is gradually becoming clear. This scenario parallels the widely recognized occurrence of post-2,000 B.P. middens in the western reaches of the Edwards Plateau (see Goode 1991).

The use of rock and earth ovens (and the formation of burned rock middens) for processing and cooking plant foods suggests that this technology was part of a generalized foraging strategy. The amount of energy involved in collecting plants, constructing hot rock cooking appliances, and gathering fuel ranks most plant foods relatively low based on the resulting caloric return (Dering 1999). This suggests that plant foods were part of a broad-based diet (Kibler and Scott 2000:134) or part of a generalized foraging strategy, an idea Prewitt (1981) put forth earlier. At times during the Late Archaic, this generalized foraging strategy appears to have been marked by shifts to a specialized economy focused on bison hunting (Kibler and Scott 2000:125–137). Castroville, Montell, and Marcos dart points are elements of tool kits often associated with bison hunting (Collins 1968). Archaeological evidence of this association is seen at Bonfire Shelter in Val Verde County (Dibble and Lorrain 1968), Jonas Terrace (Johnson 1995), Oblate Rockshelter (Johnson et al. 1962:116), John Ischy (Sorrow 1969), and Panther Springs Creek (Black and McGraw 1985).

The Archaic period represents a hunting and gathering way of life that was successful and that remained virtually unchanged for more than 7,500 years. This notion is based in part on fairly consistent artifact and tool assemblages through time and place and on resource...
patches that were used continually for several millennia, as the formation of burned rock middens shows. This pattern of generalized foraging, though marked by brief shifts to a heavy reliance on bison, continued almost unchanged into the succeeding Late Prehistoric period.

Late Prehistoric Period

Introduction of the bow and arrow and, later, ceramics into Central Texas marked the Late Prehistoric period. Population densities dropped considerably from their Late Archaic peak (Prewitt 1985:217). Subsistence strategies did not differ greatly from the preceding period, although bison again became an important economic resource during the late part of the Late Prehistoric period (Prewitt 1981:74). Use of rock and earth ovens for plant food processing and the subsequent development of burned rock middens continued throughout the Late Prehistoric period (Black et al. 1997; Kleinbach et al. 1995:795). Horticulture came into play very late in the region but was of minor importance to overall subsistence strategies (Collins 2004:122).

In Central Texas, the Late Prehistoric period generally is associated with the Austin and Toyah phases (Jelks 1962; Prewitt 1981:82–84). Austin and Toyah phase horizon markers, Scallorn-Edwards and Perdiz arrow points, respectively, are distributed across most of the state. Violence and conflict often marked introduction of Scallorn and Edwards arrow points into Central Texas—many excavated burials contain these point tips in contexts indicating they were the cause of death (Prewitt 1981:83). Subsistence strategies and technologies (other than arrow points) did not change much from the preceding Late Archaic period. Prewitt’s (1981) use of the term “Neoarchaic” recognizes this continuity. In fact, Johnson and Goode (1994:39–40) and Collins (2004:122) state that the break between the Austin and Toyah phases could easily and appropriately represent the break between the Late Archaic and the Late Prehistoric.

Around 1,000–750 B.P., slightly more-xeric or drought-prone climatic conditions returned to the region, and bison came back in large numbers (Huebner 1991; Toomey et al. 1993). Using this vast resource, Toyah peoples were equipped with Perdiz point-tipped arrows, end scrapers, four-beveled-edge knives, and plain bone-tempered ceramics. Toyah technology and subsistence strategies represent a completely different tradition from the preceding Austin phase. Collins (1995:388) states that formation of burned rock middens ceased as bison hunting and group mobility obtained a level of importance not witnessed since Folsom times. Although the importance of bison hunting and high group mobility hardly can be disputed, the argument that burned rock midden development ceased during the Toyah phase is tenuous. A recent examination of Toyah-age radiocarbon assays and assemblages by Black et al. (1997) suggests that their association with burned rock middens represents more than a “thin veneer” capping Archaic-age features. Black et al. (1997) claim that burned rock midden formation, although not as prevalent as in earlier periods, was part of the adaptive strategies of Toyah peoples.

Historic Period

Hester (1989) and Newcomb (1961) provide historical accounts of Native Americans and their interactions with the Spanish, the Republic of Mexico, the Texas Republic, and the United States throughout the region. The beginning of the late seventeenth and early eighteenth centuries was an era of more-permanent contact between Europeans and Native Americans as the Spanish moved northward out of Mexico to establish settlements and missions on their northern frontier (see Castañeda [1936–1958] and Bolton
[1970] for extended discussions of the mission system and Indian relations in Texas and the San Antonio area. There is little available information on aboriginal groups and their ways of life except for the fragmentary data Spanish missionaries gathered. In the San Antonio area and areas to the south, these groups have been referred to collectively as Coahuiltecs because of an assumed similarity in way of life, but many individual groups may have existed (Campbell 1988). Particular Coahuiltecan groups, such as the Payaya and Juanca, have been identified as occupying the San Antonio area (Campbell 1988). This area also served as a point of contact between the southward-advancing Apaches and the Spanish, with native groups often caught in between. Disease and hostile encounters with Europeans and intruding groups such as the Apache were already wreaking their inevitable and disastrous havoc on native social structures and economic systems by this time.

Establishment of the mission system in the first half of the eighteenth century to its ultimate demise around 1800 brought the peaceful movement of some indigenous groups into mission life, but others were forced in or moved in to escape the increasing hostilities of southward-moving Apaches and Comanches. Many of the Payaya and Juanca lived at Mission San Antonio de Valero (the Alamo), but so many died there that their numbers declined rapidly (Campbell 1988:106, 121–123). By the end of the mission period, European expansion and disease and intrusions by other Native American peoples had decimated many Native American groups. The small numbers of surviving Payaya and Juanca were acculturated into mission life. The last references to the Juanca and Payaya were recorded in 1754 and 1789, respectively, in the waning days of the mission (Campbell 1988:98, 123). By that time, intrusive groups such as the Tonkawa, Apache, and Comanche had moved into the region to fill the void. Outside of the missions, few sites attributable to these groups have been investigated. To complicate matters, many aboriginal ways of life endured even after contact with the Spanish. For example, manufacture of stone tools continued even for many groups settling in the missions (Fox 1979). The nineteenth century brought the final decimation of many Native American groups, the United States' defeat of the Apaches and Comanches, and the forced removal of Native Americans to reservations.

Spanish Texas: 1718 to 1821

San Antonio de Béxar Presidio, located on the east bank of the San Antonio River, was founded in 1718. In the same year, Mission San Antonio de Valero, later known as the Alamo, was transferred from the Rio Grande by Father Olivares. This mission was named after St. Anthony of Padua and the Marquis de Valero, the Viceroy of New Spain. La Villita, an Indian village about 1,500 feet south of the Alamo, was built around 1722. The Indians from the Mission San Antonio de Valero lived in La Villita in crude huts called “jacalets” (Johnston 1947:31). Later, La Villita served as a home to the families of soldiers who protected the mission. (Johnston 1947; Magruder 2008).

The villa of San Fernando de Béxar was founded in 1731 by the Canary Islanders. The Canary Islanders were a small group, totaling 56 people, sent by Spain to colonize the province of Texas. Under the leadership of Juan Leal Goraz, the village of San Fernando de Béxar was founded near the Presidio de Béxar and the first civil government in Texas was formed (Butterfield 1968; Ramsdell 1968).

In 1773, San Antonio de Béxar became the capital of Spanish Texas. By 1790, most of the Indians living in San Antonio had either already abandoned the missions or died from diseases like smallpox and the measles.
brought in by Europeans. Mission San Anto-
nio de Valero was secularized in 1794 and
mission land, excluding the church and con-
vent, was divided amongst the few Indians
that remained in the area (Johnston 1947).

Spain and Mexican revolutionists fought over
San Antonio throughout the early 1800s, in-
cluding during the Casas revolt of 1811. The
residents of San Antonio supported Mexican
independence in 1813 but the town was recap-
tured by Royalist forces in the battles of
Alazán Creek and Medina. During this period
of unrest, conditions in Texas worsened. In-
adequate provisions and neglected agricultural
fields along with the fear of political and mili-
tary upheavals forced many Texans to aban-
don their homes and move elsewhere (Fehren-
bach 2008; Heusinger 1951).

Mexican and Republic of Texas Periods:
1821 to 1845

The upheavals were not to end with Mexican
Independence in 1821. Once Mexican Presi-
dent and General Antonio López de Santa
Anna Pérez de Lebrón abolished the Constitu-
tion of 1824 and instituted a new anti-
federalist constitution in its place, Texans in
northern New Spain were outraged. The Texas
Revolution began in 1835, and during the war,
San Antonio was the site of several battles,
including the Siege of Bexar and the Battle of
the Alamo (Fehrenbach 2008).

On February 23, 1836, nearly 150 American
volunteers took refuge from the approaching
Mexican Army in the Alamo Mission in San
Antonio under orders from Colonel William
B. Travis (Hatch 1999). A standoff between
the Texian Revolutionary Army and the
Mexican Army, lasting 13 days, ended in
complete annihilation of the Alamo defenders
and a victory for the Mexican General Anto-
nio Lopez de Santa Anna (Huffines 1999).
The number of Mexican dead is a matter of
debate, with numbers ranging from 70 to
1,600; uncounted more were wounded. Santa
Anna won the battle at the Alamo but victory
and independence was won by the Texans
two weeks later in the Battle of San Jacinto
(Hatch 1999; Huffines 1999).

After Mexican forces were removed from San
Antonio in December of 1836, the Republic of
Texas began organizing Bexar County. The
next month, San Antonio was chartered as the
county seat. Despite these progressions, many
conflicts continued to occur in San Antonio
including the Council House Fight of 1840
and two Mexican invasions in 1842 (Fehren-
bach 2008).

United States Period: 1845 to 1900

After Texas entered the Union in 1845, San
Antonio’s already diverse population grew
dramatically. The Irish came to Texas between
the late 1830s and early 1840s and established
a community called “Irish Flat.” Germans also
settled in San Antonio in the 1850’s introduc-
ing the “Bier Halle” (Butterfield 1968:21) to
the area. French immigrants added artists and
artisans to the culture of the city. Later immi-
grants to the area included the Polish, Italian,
Greeks, Syrian and in 1910, the Chinese, all of
which formed small communities within the
city of San Antonio. Culture and architecture
from each immigrant community have seeped
into San Antonio and merged together, form-
ing a rich cultural community. This diverse
culture is evident in downtown San Antonio
with historic missions and Victorian mansions
built next to modern offices and homes
(Butterfield 1968; Fehrenbach 2008).

Into the Era of Modernity

The first railway came through the city in
1877, bringing with it a plethora of job oppor-
tunities and commercial ventures. Alameda
Street was officially changed to East Com-
merce Street in 1881 due to its association
with the railroad industry and participation as a main route for mass-produced goods to reach San Antonio citizens (NRHP 1974). Through the 1880s and 1890s, the population and economy of San Antonio prospered. Electric street cars were introduced to the growing city in 1890 allowing patrons to travel across the city quickly and economically, and tourism began to flourish as an important city commercial venue (NRHP 1974). The population of the city doubled between 1890 and 1900, from 53,321 to over 100,000 people (Fox et al. 1997:31).

Throughout the early twentieth century, trade, transportation and tourism continued to bring economic prosperity to the city. In 1905, ownership of the Alamo complex was given to the Daughters of the Republic of Texas, who began to restore the church and surrounding grounds (NRHP 1976). The establishment of Fort Sam Houston and the activity surrounding World War I and World War II kept the railway system active and commercial activity in the east prospered. The construction of the Riverwalk in the mid-1930s brought additional visitors to the city and government grants through the Work Progress Administration [WPA] allowed the construction of several government and city buildings, and the sponsorship of city beautification projects (Henry 1993).

Through the remainder of the twentieth century, the city expanded rapidly but the downtown portion retained the city plan established in the nineteenth century. A major preservation program was initiated in 1976 in conjunction with new planning laws emphasizing the establishment of historic districts and national landmarks. Thus, most of the downtown area today retains its late nineteenth century appearance and configuration, while accommodating modern conveniences such as plumbing, electricity, and the automobile.

Camp Bullis History
Camp Bullis, a camp for the U.S. Army associated with Fort Sam Houston, encompasses 12,000 acres and was created for the purposes of field training troops. The camp derived its name from Brigadier General John Lapham Bullis, an influential soldier during the Indian Wars. Initially established for impending World War I conflicts in 1917, the camp has since trained troops for action during World War II, the Korean War, and the Viet Nam War. Although Camp Bullis has undergone changes in the recent past, the camp continues to operate as a training ground in field maneuvers for soldiers (Leatherwood 2008).

METHODS

BACKGROUND REVIEW

SWCA conducted a thorough background cultural resources and environmental literature search of the project area. An SWCA archaeologist reviewed the Camp Bullis, Texas, USGS 7.5-minute topographic quadrangle map at the Texas Archeological Research Laboratory (TARL) and searched the Texas Historical Commission’s (THC) Texas Archeological Sites Atlas (Atlas) online database for any previously recorded surveys and historic or prehistoric archaeological sites located in or near the project area. In addition to identifying recorded archaeological sites, the review included information on the following types of cultural resources: National Register of Historic Places (NRHP) properties, State Archeological Landmarks (SALs), Official Texas Historical Markers, Registered Texas Historic Landmarks (RTHLs), cemeteries, and local neighborhood surveys. The archaeologist also examined the *Soil Survey of Bexar County, Texas* (Taylor et al. 1991) and the *Geologic Atlas of Texas, San Antonio Sheet* (Barnes 1983). Aerial photographs were reviewed to assist in identifying any disturbances.
FIELD METHODS

SWCA's investigations consisted of an intensive pedestrian survey with subsurface investigations within the project area.

Archaeologists examined the ground surface and extensive erosional profiles and exposures for cultural resources. Subsurface investigations involved shovel testing in settings with the potential to contain buried cultural materials. The shovel tests were approximately 30 cm in diameter and excavated to culturally sterile deposits or impassible limestone, whichever came first. The matrix from each shovel test was screened through 1/4-inch mesh, and the location of each excavation was plotted using a hand-held GPS receiver. Each shovel test was recorded on a standardized form to document the excavations.

RESULTS

BACKGROUND REVIEW

The background review determined that some areas situated to the east of the project area associated with Camp Bullis have been previously surveyed. Although the project area has not been surveyed, it was incorporated in a synthesis that reviewed the cultural properties of the area. Also, several archaeological sites encountered during the previous surveys are located within a mile of the project area. Specifically, there are seven archaeological sites (41BX402, 41BX403, 41BX807, 41BX809, 41BX810, 41BX826, and 41BX923) located roughly one mile east of the Brenchurst Phase I project area.

There have been at least three surveys conducted within Camp Bullis that are situated within a mile of the project area. One survey was conducted in the late 1970s during the Fort Sam Houston Project for the Fort Worth District of the Army Corps of Engineers (COE-FWD). This project included an archaeological and historical assessment as well as a survey of portions of Camp Bullis. Sites 41BX402 and 41BX403 were recorded during this survey.

In the late 1980s, Prewitt and Associates conducted multiple surveys of portions within Camp Bullis for the COE-FWD. This survey documented, among others, sites 41BX807, 41BX809, 41BX810, 41BX826, and 41BX923.

None of these previously conducted surveys overlap the proposed project area. Each of the archaeological sites encountered during these surveys within a mile of the project area are situated in a rocky upland setting. All of these sites that are discussed in detail below overlook the Salado Creek drainage, which is situated to the east.

Sites 41BX402 and 41BX403 consist of exclusively surficial prehistoric lithic scatters with some scattered burned rock. Site 41BX402 did not contain temporally diagnostic artifacts while 41BX403 is recorded as having Travis, Bulverde, Pedernales, Angostura, and Gower projectile points. No further archaeological work was recommended for either of these sites (Atlas Site forms).

Similarly, sites 41BX807, 41BX809, 41BX810, and 41BX923 are recorded as prehistoric surficial lithic scatters. All of these sites are indicated to have diffusely scattered lithic debitage, bifacial tool fragments, and some scattered thermally altered rock fragments. Only site 41BX807 is recorded as containing projectile points, which are solely identified as dart points. Therefore, this site has been interpreted to have an Archaic temporal setting. The remaining sites are indeterminate regarding temporal affiliation. No further archaeological work was recom-
mended for all four of these sites (Atlas Site forms).

The final site, 41BX826, is identified as an historic structure. The recorders indicate that this site is composed of a concrete structure used for military purposes. Specifically, the structure is interpreted to have been used as an observation area for military exercises (grenade practice) during World War I and may possibly date to the initial construction of Camp Bullis (Atlas Site form).

None of these previously sites will be affected by the proposed activities of the Brenthurst Phase I project.

FIELD SURVEY

On April 2, 2008, two SWCA archaeologists conducted an intensive pedestrian survey of the 37-acre Brenthurst Phase I project area. Overall, the project exhibited prevalent rocky uplands and some significant modifications. Some of these disturbances include: some quarrying activity, overhead utilities, existing roadways, refuse disposal, and vegetation clearing. The project area is a mix of thick vegetation with an overstory of scattered oaks and cedar and extensively cleared areas with only shrubs and short grasses (see Figures 3 and 4).

The subsurface investigations of the project area consisted of 16 shovel tests (Figure 5). The depths of these shovel tests ranged from 5–35 centimeters below surface (cmbs); however, most of them encountered degrading limestone bedrock at 7 cmbs. Overall, the shovel tests averaged 15 centimeters in depth and generally encountered a thin surface of humate material above a horizon of silty clay loam with abundant limestone gravels and small cobbles overlying degrading limestone bedrock (Table 1).

Additional shovel tests were deemed unnecessary due to the widespread exposures bedrock and scattered disturbances (Figures 6 and 7).

No cultural materials were encountered in any of the 16 shovel tests. Further, no chert debris, sources, or outcrops were seen interbedded within the limestone formations encountered in the project area. The absence of chert raw materials is notable considering the prevalence of previously recorded prehistoric quarry sites in proximity to the project area. Specifically, the overwhelming majority of the previously recorded sites are located about a mile east of the project area situated along the Salado Creek drainage valley. This inconsistency may be attributed to a different geologic exposure than what is present at the project area. Regardless, no chert debris or chert source locations were apparent within the proposed project area.

The survey did encounter several isolated historic artifacts diffusely scattered throughout the project area. Specifically, two isolated finds (IF-1 and IF-2) and one concentration were observed within the project area (Figure 5).

The first isolated find (IF-1) consists of two tin beverage cans. Both beverage cans have sanitary end and side seams with a flat-top profile and a church key opening. Both cans had been used for target practice and one was crushed and not measurable. The remaining can measured 4 1/2 inches in length and 2 5/8 inches in diameter. Based upon manufacturing techniques these cans appear to be beer cans dating from 1935–1955 (IMACS 2000; Maxwell 1993).

The second isolated find (IF-2) consists of one tin pail can with handle (Figure 5). This can has a lapping end seam, a crimped side seam, and an internal friction opening (Figure 8). Based upon manufacturing techniques this can
Figure 5. Overview of investigations in project area.
<table>
<thead>
<tr>
<th>Shovel Test #</th>
<th>Depth (cmbs)</th>
<th>Munsell</th>
<th>Soil Color</th>
<th>Soil Texture Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-7</td>
<td>10YR6/4</td>
<td>Lt. Yellowish Brown</td>
<td>Gravelly loam</td>
<td>Uplands with mostly exposed surface; encountered degrading bedrock.</td>
</tr>
<tr>
<td>2</td>
<td>0-15</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Silty clay loam</td>
<td>Humate to 3 cmbs; upland area.</td>
</tr>
<tr>
<td>3</td>
<td>0-30</td>
<td>10YR4/3</td>
<td>Brown</td>
<td>Clay loam</td>
<td>Bedrock terrace; 1 rabdotus shell recovered.</td>
</tr>
<tr>
<td></td>
<td>30-35</td>
<td>7.5YR4/4</td>
<td>Brown</td>
<td>Clay</td>
<td>Degrading bedrock.</td>
</tr>
<tr>
<td>4</td>
<td>0-18</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Silty clay loam</td>
<td>Humate to 2 cmbs; upland area.</td>
</tr>
<tr>
<td>5</td>
<td>0-15</td>
<td>10YR4/3</td>
<td>Brown</td>
<td>Clay loam</td>
<td>Stratigraphy appears to be a compressed version of ST-3.</td>
</tr>
<tr>
<td>7</td>
<td>0-5</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Clay loam</td>
<td>Degrading bedrock.</td>
</tr>
<tr>
<td>8</td>
<td>0-12</td>
<td>10YR5/3</td>
<td>Brown</td>
<td>Silty clay loam</td>
<td>Noticeable humate (leaf litter) in area.</td>
</tr>
<tr>
<td>9</td>
<td>0-5</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Clay loam</td>
<td>Same as ST-7; placed outside of project area.</td>
</tr>
<tr>
<td>10</td>
<td>0-20</td>
<td>10YR3/2</td>
<td>Very Dark Grayish Brown</td>
<td>Silty clay loam</td>
<td>Humate to 2 cmbs; upland area.</td>
</tr>
<tr>
<td>11</td>
<td>0-10</td>
<td>10YR4/4</td>
<td>Dark Yellowish Brown</td>
<td>Clay loam</td>
<td>Near headwater of small intermittent drainage.</td>
</tr>
<tr>
<td>12</td>
<td>0-7</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Very gravelly, Silty clay loam</td>
<td>Degrading bedrock.</td>
</tr>
<tr>
<td>13</td>
<td>0-15</td>
<td>10YR4/3</td>
<td>Brown</td>
<td>Clay loam</td>
<td>Similar to ST-5.</td>
</tr>
<tr>
<td>14</td>
<td>0-10</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Silty clay loam</td>
<td>Tract 3</td>
</tr>
<tr>
<td>15</td>
<td>0-5</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Clay loam</td>
<td>Degrading bedrock.</td>
</tr>
<tr>
<td>16</td>
<td>0-7</td>
<td>10YR5/4</td>
<td>Yellowish Brown</td>
<td>Silt loam</td>
<td>Tract 3</td>
</tr>
<tr>
<td>17</td>
<td>0-30</td>
<td>10YR5/3</td>
<td>Brown</td>
<td>Silt loam</td>
<td>Degrading bedrock.</td>
</tr>
</tbody>
</table>
Figure 6. Overview typical disturbances observed within project area; facing southeast.

Figure 7. Overview typical disturbances observed along periphery of project area; facing north.
Figure 8. Photo of IF-2; note lapping end seam and crimped side seam.
dates from 1906–1960s (IMACS 2000). However, this isolated find probably dates to the latter half of the twentieth century. Functionally, this can may have been used for subsistence (e.g., fruit, vegetables, or lard) or industrial (i.e., paint) purposes.

The concentration of historic debris consists of a scatter of 40+ beverage cans (Figure 5). These tin cans are all similar in construction to IF-1. Specifically, these beverage cans had sanitary end and side seams with a flat-top profile and a church key opening. All of these beverage cans had been used for target practice and must have been crushed and not measurable. The manufacturing techniques indicate that these are beer cans dating from 1935–1955 (IMACS 2000; Maxwell 1993). Based upon their deposition and the absence of associated structures, this concentration appears to be a refuse area possibly associated with a hunting stand or similar activity (Figure 9).

The isolated finds and the concentration encountered in the project area all suggest middle twentieth century debris. These artifacts are not associated with a habitation but rather secondary refuse events. Further, all of the artifacts are situated on a rocky surface with no possibility of an associated intact buried cultural component. Therefore, these isolated finds cannot contribute any further data to the historic record of the region and did not warrant formal designation as an archaeological site. As such, no further archaeological work is recommended for these isolated artifacts.

SUMMARY AND RECOMMENDATIONS

SWCA conducted a cultural resources investigation of the 37-acre Brenthurst Phase I project area in northern Bexar County, Texas. Work was done to satisfy requirements of the HPO per the City of San Antonio’s Historic Preservation and Design Section of the Uniformed Development Code (Article 6 35-360 to 35-634).

The background review revealed that some areas east of the project area associated with Camp Bullis have been previously surveyed. Although the project area has not been surveyed, it was incorporated in a synthesis that reviewed the cultural properties of the area. Also, of the archaeological sites encountered during the previous surveys, seven of them are located within a mile of the project area. Specifically, archaeological sites (41BX402, 41BX403, 41BX807, 41BX809, 41BX810, 41BX826, and 41BX923) are located roughly one mile east of the Brenthurst Phase I project area. All of these sites are situated in a rocky upland overlooking the Salado Creek drainage to the east.

No evidence of chert raw materials or lithic artifacts was encountered within the project area. However, two isolated finds and one refuse dump were observed consisting of tin cans that suggest manufacture and probably use around the middle twentieth century. These artifacts were not observed in association with any structures and cannot contribute any additional information for the historic record of the region. As such, no further work is recommended for these isolated artifacts.

The survey included 16 shovel tests placed in areas that had the highest potential for containing buried cultural materials with good integrity. No cultural materials were identified within any of the shovel test excavations, and no artifacts, features, or standing structures were observed on the surface of the project area. The survey recorded no additional archaeological sites on the property. Overall, the project area is almost exclusively a rocky upland setting with prevalent limestone bedrock outcroppings and minor areas of shallow rocky clay loam soils. In addition to the widespread bedrock exposures the project area has
Figure 9. Overview of concentration encountered in project area; facing southwest.
some disturbances consisting of off-road vehicle traffic, clear cutting, tree throws, hunting, water run-off, and fence lines. Accordingly, no intact significant cultural resources will be affected by any construction activities within the project area. SWCA recommends no further archaeological investigations within the project area.
REFERENCES

Barnes, V. E.

Bever, M. R. and D. J. Meltzer

Black, S. L.

Black, S. L., L. W. Ellis, D. G. Creel, and G. T. Goode

Black, S. L., and A. J. McGraw
1985 The Panther Springs Creek Site: Cultural Change and Continuity within the Upper Salado Creek Watershed, South-Central Texas. Archeological Survey Report No. 100. Center for Archeological Research, The University of Texas at San Antonio.

Bolton, H. E.
1970 Texas in the Middle Eighteenth Century: Studies in Spanish Colonial History and Administration. The Texas State Historical Association and the University of Texas Press, Austin.

Bousman, C. B.

Butterfield, J. C.
1968 The Free State of Bejar. 2nd ed. Library Committee The Daughters of the Republic of Texas at the Alamo, Texas.

Campbell, T. N.
1988 Indians of Southern Texas and Northeastern Mexico: Selected Writings of Thomas Nolan Campbell. Texas Archeological Research Laboratory, with the cooperation of the Department of Anthropology, the College of Liberal Arts, and the Institute of Latin American Studies, The University of Texas at Austin.

Collins, M. B.
1968 A Note on Broad Corner-Notched Projectile Points Used in Bison Hunting in Western Texas. The Bull Roarer 3(2):13–14. The University of Texas Anthropological Society, Department of Anthropology, The University of Texas at Austin.

1990 The Archeological Sequence at Kincaid Rockshelter, Uvalde County, Texas. Transactions of the Twenty-Fifth Regional Archeological Symposium for Southeastern New Mexico and Western Texas, pp. 25–34.

Collins, M. B., B. Ellis, and C. Dodt-Ellis

Collins, M. B., G. L. Evans, T. N. Campbell, M. C. Winans, and C. E. Mear

Collins, M. B., J. Guy, and S. W. Dial

Collins, M. B., T. R. Hester, and P. J. Hedrick

Dering, P

Dibble, D. S., and D. Lorrain

Fehrenbach, T. R.

Fox, D. E.
Fox, D. E., M. Renner, and R. Hard

Goode, G. T.

Hatch, T.

Heusinger, E. W., F.R.G.S.

Hester, T. R.

Huebner, J. A.

Huffines, A. C.

IMACS User’s Guide

Jelks, E. B.
1962 The Kyle Site: A Stratified Central Texas Aspect Site in Hill County, Texas. Archaeology Series No. 5. Department of Anthropology, The University of Texas at Austin.

Johnson, L., Jr.

Johnson, L., and G. T. Goode
Johnson, L., Jr., D. A. Suhm, and C. D. Tunnell

Johnston, L. C.
1947 San Antonio St. Anthony’s Town. Librarian’s Council, San Antonio, Texas.

Katz, P. R.
1987 Archeological Mitigation at 41BX300, Salado Creek Watershed, South-Central Texas. Archeological Survey Report No. 130. Center for Archeological Research, The University of Texas at San Antonio.

Kelley, J. C., and T. N. Campbell

Kerr, A. C., and S. W. Dial

Kleinbach, K., G. Mehalchick, J. T. Abbott, and J. M. Quigg

Kibler, K. W., and A. M. Scott

Leatherwood, A.

Lukowski, P. D.

Magruder, L.

Maxwell, D. B. S.
McGraw, A. J., and K. Hindes

McKinney, W. W.

Meltzer, D. J., and M. R. Bever

National Register of Historic Places [NRHP]

Newcomb, W. W., Jr.
1961 *The Indians of Texas.* University of Texas Press, Austin.

Pertulla, T. K. (editor)
2004 *The Prehistory of Texas.* Texas A&M University Press, College Station.

Prewitt, E. R.

Ramsdell, C.

Sorrow, W. M.
1969 *Archeological Investigations at the John Ischy Site: A Burned Rock Midden in Williamson County, Texas.* Papers of the Texas Archeological Salvage Project No. 18. The University of Texas at Austin.

Story, D. A.

Suhm, D. A.

Takac, P. R.

Taylor, F. B., R. B. Hailey, and D. L. Richmond

Thoms, A. V., and R. D. Mandel

Toomey III, R. S., M. D. Blum, and S. Valastro Jr.

Wandsnider, L.

Weir, F. A.

Wesolowsky, A. B., T. R. Hester, and D. R. Brown

Willey, G. R., and P. Phillips

Wilson, E. W.