ARCHEOLOGICAL INTENSIVE SURVEY SCOPE

VFW Boulevard Drainage Improvements Segment 2, Bexar County, Texas

Project Description

The purpose of the investigation described in this document is to document archeological resources within the footprint of proposed drainage improvements and associated construction activities along VFW Boulevard from Roosevelt Avenue, which is also a Texas Department of Transportation (TxDOT) roadway known as Spur 536, to Padre Drive in southeastern San Antonio, Bexar County, Texas (Figure 1). The project, which is owned by the City of San Antonio (CoSA) and TxDOT and funded by Bexar County, is intended to reduce flooding.

The main purpose of the project is to install box-section storm drains measuring approximately 3 by 2.4 m (10 by 8 ft) and 2.4 by 1.8 m (8 by 6 ft) partly under the existing roadway. The project will include additional minor elements such as the construction of sidewalks along the north and south sides VFW Boulevard.

The project area, and therefore the archeological area of potential effects (APE), extends from just west of Roosevelt Avenue to Padre Drive, a distance of approximately 0.43 kilometers (km) or 0.27 miles (see Figure 1 and Appendix A). The drains will be installed at a maximum depth of approximately 6 meters (m) or 20 feet (ft). Most of the APE varies in width between 27.4 and 36.6 m (90 and 120 ft), with its maximum width of approximately 113 m (370 ft) along Roosevelt Avenue. The 1.68-hectare (4.15-acre) APE includes approximately 1.29 hectares (3.19 acres) of existing City and County right-of-way (ROW) and 0.38 hectares (0.95 acres) of TxDOT ROW (see Figure 1). The APE also includes 0.002 hectares (0.005 acres) of new ROW to be acquired by the County; this area is too small to be shown in project maps but can be seen in Appendix B.

No project-specific locations or new temporary or permanent easements are known at this time. Many utility lines are present within the project area but the extent of utility relocation has not yet been fully established. Appendix A contains all the design information that is currently available.

This investigation concerns the second segment of a project formerly structured as one larger project. Additional drainage improvements will be constructed from Padre Drive to the San Antonio River; this work is known as VFW Boulevard Drainage Improvements Segment 1. On December 15, 2011, a meeting was held at the TxDOT San Antonio District office with representatives from TxDOT, CoSA, and Bexar County to discuss cultural resource issues in the area. One of the outcomes of the meeting was the recommendation (with concurrence from CoSA’s City Archeologist) that Segments 1 and 2 be coordinated separately for several reasons: first, Segment 1 has independent utility; second, the segments have different construction schedules, rendering a single archeological permit for both projects unwieldy; and third, cultural resource coordination for Segment 2 falls under TxDOT’s jurisdiction due to the inclusion of Roosevelt Avenue/Spur 536, while Segment 1 does not include any TxDOT facilities. Per these discussions, Texas Antiquities Permit 6139 was issued to Cox|McLain Environmental Consulting, Inc. (CMEC) on January 11, 2012 for Segment 1, but was cancelled on January 17, 2012 due to administrative restructuring of the project.

The Segment 2 project consists of elements to be installed at and below the ground surface within a heavily developed environment. Thus, the project has no potential to cause permanent adverse visual impacts to NRHP-listed or -eligible resources. Other indirect impacts, such as induced growth, are unlikely, given the lack of land available for development in the area.

Background Information

The APE is located at an approximate elevation of 174 m (570 ft) above mean sea level on a level terrace west of the San Antonio River. Geologically, the entire APE is underlain by late Quaternary (Holocene) alluvial
terrace deposits of sand, silt, clay, and gravel (Stoeser et al. 2007). Soil in the APE is mapped as Sunev clay loam on 0-1 percent slopes (NRCS 2012).

A data search of the Texas Archeological Sites Atlas maintained by the Texas Historical Commission (THC) and the Texas Archeological Research Laboratory (TARL) was conducted in order to identify any previously recorded cemeteries, historical markers, National Register of Historic Places (NRHP) properties or districts, State Archeological Landmarks (SALs), archeological sites, and previous surveys in the APE or within 1 km (0.62 miles), the standard buffer zone for such searches. One large-scale NRHP resource, the Mission Parkway National Historic District, encompasses most of the APE (THC 2012; see Figure 1).

One linear and two area surveys are shown crossing the APE in the Atlas’ map view. The dates and other details of the linear survey are unknown, as its Atlas record is incomplete. The area surveys cover the entire Mission Parkway District and were undertaken in 1976 and 1980 by the THC and the National Park Service (NPS). In addition, keyword searches in the Atlas revealed a recent (2008-2010) CoSA project undertaken by SWCA at the NRHP-eligible Mission Drive-In at the intersection of VFW and Roosevelt. Finally, through coordination with TxDOT and CoSA personnel, CMEC learned of ongoing (2011-2012) investigations by the Center for Archeological Research at the University of Texas at San Antonio (CAR-UTSA) in Mission County Park, immediately east of the VFW-Padre intersection.

Within 1 km (0.62 miles) of the APE the following resources were found (THC 2012):

- Two additional National Register properties/districts
 - Ethel Wilson Harris house
 - San Jose Mission National Historic Site
- One historical marker associated with San Jose Mission
- One cemetery associated with San Jose Mission
- The Mission Drive-In south of VFW Boulevard, east of Roosevelt Avenue, and west of Padre Drive, recently evaluated by SWCA as eligible for the NRHP
- 16 previously recorded archeological sites:
 - 41BX3, San Jose Mission
 - 41BX237, the ruins of Hot Wells Bath House, a late-19th/early-20th-century bath house that has burned at least three times, most recently in 2011
 - 41BX267, the route of the main San Jose acequia
 - 41BX270, a site of unknown age/affiliation due to an incomplete Atlas record
 - 41BX563, trenches and materials associated with San Jose Mission (41BX3)
 - 41BX1621, a site of unknown age/affiliation due to an incomplete Atlas record
 - 41BX1628, a low-density deposit of prehistoric and historic-age materials recommended for additional work due to depth potential
 - 41BX1774, an early 20th-century residence adjacent to the Mission Drive-In
 - 41BX1803, a minor deposit of historic-age glass
 - 41BX1806, a minor deposit of historic-age glass and limestone fragments
 - 41BX1807, a minor deposit of historic-age glass, ceramic, and metal fragments
 - 41BX1809, a minor deposit of historic-age glass, ceramic, metal, and other materials
 - 41BX1917, a minor, likely disturbed deposit of prehistoric and historic-age materials
 - 41BX1918, a minor, likely disturbed deposit of prehistoric and historic-age materials
 - 41BX1919, a minor scatter of prehistoric and historic-age materials
 - 41BX1920, major prehistoric occupation and apparent fragment of Spanish colonial acequia, likely NRHP/SAL-eligible

Information provided by CAR-UTSA and TxDOT indicates that the colonial component of 41BX1920 may represent a hitherto unknown eastern secondary canal from the main San Jose acequia located west of the APE (41BX267; see Figure 1), and that this eastern fork may cross VFW Boulevard within the APE of the present
Based on documentation of similar canals in the area, the acequia was initially hypothesized to be up to 4.6-6.1 m (15-20 ft) in width and 4.6 m (15 ft) or more in depth, beyond the depth of typical zones of road and utility disturbance (0.6-1.8 m or 2-6 ft) as well as the reach of typical archeological trenching (1.8-2.4 m or 6-8 ft). Therefore, earlier versions of this permit application, and earlier rounds of coordination with stakeholders, emphasized plans for ground-penetrating radar (GPR) survey to attempt to find the acequia. However, based on preliminary field data from 41BX1920 (provided by CAR-UTSA Director Steve Tomka), the acequia as found in Mission County Park appears to be ill-suited to geophysical prospection; much of the original upper part of the acequia appears to have been removed by development, and only the bottom remains, at less than 1.5 m (5 ft) in depth, far shallower than initial estimates and well within the reach of conventional mechanical units. GPR is still included here (see below) but is now considered a backup rather than primary approach.

Research Design

CMEC will conduct an intensive survey of the 1.68-hectare (4.15-acre) APE per category 2 under 13 TAC 26.20 and using the definitions in 13 TAC 26.5. Field methods and strategies will comply with the requirements of 13 TAC 26.20, as elaborated by the THC and the Council of Texas Archeologists (CTA).

Shovel tests will be placed where ground surface visibility is below 30 percent, soils appear to be of sufficient depth to contain subsurface cultural materials, and/or previous disturbance appears minimal. To set a conservative baseline appropriate to the APE’s location in an NRHP district, if the APE is assumed to be entirely undisturbed (clearly not the case given the presence of an existing roadway within the APE, but the field conditions have not been observed firsthand yet), a linear goal of 32 shovel tests per mile (double the THC/CTA minimum) has been established, with a single transect along each side of VFW Boulevard. All shovel tests will be excavated in natural levels to subsoil or 60 cm (24 in), whichever is encountered first. Excavated matrix will be screened through 0.635-cm (0.25-in) hardware cloth as allowed by moisture and clay content, which may require that the removed sediment be crumbled/sorted by hand, trowel, and/or shovel point. Deposits will be described using conventional texture classifications and Munsell color designations. Radial shovel tests will be placed at 5-m (16-ft) intervals around each shovel test positive for cultural material until two negative units have been established in each cardinal direction, as allowed by project limits, observed disturbance, and other constraints. Deviations from THC and CTA standards will be explicitly justified.

Given the great depth of Sunev clay loam and the Holocene-age alluvial parent material beneath it, mechanical trenches will be excavated if field observations confirm they are logistically feasible based on drainage, disturbance, utility lines, and other constraining factors. Results from 41BX1920, where the remains of the colonial acequia were found in a trench profile, demonstrate the utility of this approach. Based on project design documents, existing disturbance is expected to be complex and to present major limitations. In addition, in some locations the existing storm drain may be so close to the proposed route that no ground remains undisturbed and amenable to investigation. CMEC’s tentative goal (i.e., prior to firsthand evaluation of field conditions) is for 3-8 trenches to be excavated along the APE. Trenches will be excavated under the supervision of archeologists, who will examine profiles and backdirt for the presence of cultural materials and features. The trenching will progress in 50-cm (20-in) depth increments, and a sample from each increment will be screened through 0.635-cm (0.25-in) hardware cloth or crumbled/troweled due to clay/moisture content. The depth goal for the deep testing will be 1.5-1.8 m (5-6 ft), although the actual depth reached in each trench will be based on pedogenic and depositional horizons observed, the presence or absence of cultural materials, the local water table, and safety concerns related to soil stability. Due to no-excavation buffers around existing utilities, some or all of the units may be narrow slit trenches, i.e. without safety benches. If slit trenches are excavated, no personnel will enter the units, and all documentation will take place from outside the units. Only larger trenches with safety benches will be entered by staff members. Following completion of the mechanical excavations, CMEC personnel will examine the exposed deposits (as allowed by trench configuration and safety issues) and describe them using conventional texture classifications and Munsell color designations. Following description
of the deposits and sketching/photography of any features observed, CMEC personnel will supervise the complete backfilling and leveling of each trench area and the removal of any temporary safety fencing installed during the excavations.

Depending on field conditions, CMEC may also use GPR to collect subsurface data in the APE. The primary goal of GPR survey would to examine profile data for any indication of the hypothesized acequia or any other deeply buried anomaly that may require examination via archeological monitoring at the construction stage. At the December 15, 2011 meeting, GPR was mentioned as a possible acequia-prospection option to be used by TxDOT archaeologists along Roosevelt Avenue, within and/or near Segment 2. However, the preliminary CAR-UTSA results argue against GPR use in tracking the acequia in this area: according to Steve Tomka, the canal is unlined (thus reducing the likelihood of the strong contrast in sediment properties necessary for identification via GPR) and is also much shallower than initially thought, within the range of conventional trenching, even in constrained conditions. Nevertheless, as the project develops and stakeholder conversations continue, new information may make GPR a more attractive option.

The APE is located on public land, with the exception of the 0.002-hectare (0.005-acre) parcel targeted for acquisition (see Appendix B), which is located along Roosevelt Avenue and is likely too disturbed and too small a space to yield significant materials. Therefore, public-land requirements are considered to effectively cover the entire APE. Per the provisions of the Antiquities Code, diagnostic artifacts will be collected from surface and subsurface contexts. If materials are collected, they will be prepared according to CAR-UTSA’s standards and sent to that facility for long-term curation.

The project has a low probability of encountering human burials; if unanticipated burials are found, TxDOT will be notified and all requirements of 8 THSC 711 will be followed.

Each site located will be identified by a temporary marker placed on the site. The marker will have an identifying number in the form of “CMEC-XXX”. This number is a temporary field number, to be superseded by a formal site trinomial obtained following the completion of fieldwork (see below). Site designations will be applied only to features (whether surface or subsurface) that appear to represent occupation or activity areas and/or to clusters of artifacts (whether surface or subsurface), with the minimum threshold of two contiguous positive shovel test units.

CMEC personnel will keep a complete record of field notes supplemented by digital photographs, with observations including (but not limited to) identified sites, cultural materials, location markers, contextual integrity, estimated time periods of occupations, vegetation, topography, hydrology, land use, soil exposures, general conditions at the time of the survey, and field techniques employed.

Reporting and Curation

Prior to completion of the report (discussed further below), relevant field observations for any new sites discovered or previously identified sites revisited will be transferred to TexSite forms and submitted to TARL for official recording and integration into the trinomial system. An analysis of recorded materials and site characteristics will be performed, and the results presented in a clear and concise manner.

These data will be used to formulate a preliminary evaluation of the NRHP and/or SAL eligibility of each site, as well as a recommendation for further work or no further work, supported by explicit justifications per 13 TAC 26.20 and the definitions in 13 TAC 26.5. The criteria to be used are presented below:

NRHP Eligibility

The National Historic Preservation Act of 1966, as amended, provides a statement of federal authority, an administrative framework for agency coordination, and general principles for the assessment of cultural resources, including archeological sites (called “historic properties” in this regulatory context,
regardless of actual historic or prehistoric dates), for their eligibility for inclusion in the National Register of Historic Places (36 CFR 800; 9 TNRC 191; 13 TAC 26.24).

More specific rules relating to the NRHP nomination process, list management, relevant definitions, and other matters are described in 36 CFR 60. Most important to the present investigation are the criteria for significance (and therefore potential NRHP eligibility):

...The quality of significance in American history, architecture, archeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, material, workmanship, feeling, and association and

(a) that are associated with events that have made a significant contribution to the broad patterns of our history; or
(b) that are associated with the lives of persons significant in our past; or
(c) that embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
(d) that have yielded or may be likely to yield, information important in prehistory or history (36 CFR 60.4).

Note that significance and NRHP eligibility are determined by two primary components: integrity and one of the four types of association and data potential listed under 36 CFR 60.4(a-d). The criterion most often applied to archeological sites is the last—and arguably the broadest—of the four (36 CFR 60.4[d]).

SAL Eligibility

For cultural resources identified on lands owned or controlled by the State of Texas or one of its political subdivisions—as well as resources on specially designated private lands in the state—provisions of state law relating to State Archeological Landmarks may also apply. This project involves land owned and/or controlled by CoSA and Bexar County; therefore, a brief overview of SAL criteria is included below.

An archeological site may be of sufficient significance to allow designation as a SAL if at least one of the following criteria applies:

1. the site has the potential to contribute to a better understanding of the prehistory and/or history of Texas by the addition of new and important information;
2. the site's archeological deposits and the artifacts within the site are preserved and intact, thereby supporting the research potential or preservation interests of the site;
3. the site possesses unique or rare attributes concerning Texas prehistory and/or history;
4. the study of the site offers the opportunity to test theories and methods of preservation, thereby contributing to new scientific knowledge;
5. the high likelihood that vandalism and relic collecting has occurred or could occur, and official landmark designation is needed to insure maximum legal protection, or alternatively further investigations are needed to mitigate the effects of vandalism and relic collecting when the site cannot be protected (13 TAC 26.8).

Following the interim submittal, a standard draft survey report will be prepared in compliance with the guidelines promulgated in 13 TAC 26.24 and by the CTA, and submitted to CoSA, the County, and TxDOT for review and comment, with at least four copies of the draft going to TxDOT. The report will include an introductory chapter discussing the conditions of the survey, a chapter on the environmental setting of the project area, a chapter discussing relevant cultural contexts, including previous research in the area, a chapter on survey methodology, a chapter explaining the results of this survey, and finally a chapter summarizing all work undertaken for the project and the resulting recommendations. The results will include CMEC's evaluation of each site's NRHP/SAL eligibility and the criteria used for such evaluation (in this case, per conversations with CoSA and TxDOT archeological staff, NRHP Criterion D will likely be the most relevant of the criteria, and the NRHP discussion will most likely focus on the potential to contribute to existing NRHP sites/districts). Each chapter of the report will contain all pertinent data collected and recorded per the requirements of subchapters and rules under 13 TAC 26, as applicable for this project. Property status (public or private) will be noted for
each unit excavated and each site identified. Comments on the draft report will be incorporated into a final version to be submitted to CoSA, the County, and TxDOT, with at least six hard copies (five bound and one unbound) and an archival CD or DVD with electronic copies for the latter. Per 13 TAC 26.24, the final submittal will include the transmission of at least one unbound copy and an electronic copy in tagged PDF format to the THC as well as the transmission of bound copies without site location information to state repositories.

Upon completion of the fieldwork and reporting, all materials generated by this project will be made available to future researchers at an appropriate public facility per TAC 26.27 and 26.5.

References

Natural Resources Conservation Service (NRCS)

Stoesser, D. B., N. Shock, G. N. Green, G. M. Dumonceaux, and W. D. Heran

Texas Historical Commission (THC)

Figures

1. Location of project APE (topo base)

Appendices

A. Engineering information (typical sections, layout, etc.)
B. Survey information for proposed ROW
Appendix A - Engineering Information (Typical Sections, Layout, etc.)
PUBLIC WORKS DEPARTMENT
FLOOD CONTROL DIVISION

VFW BLVD DRAINAGE IMPROVEMENTS SEGMENT 2

IFB 20XX-XX

THE STATE OF TEXAS
COUNTY OF BEXAR

NELSON W. WOLFF COUNTY JUDGE
SERGIO "CHICO" RODRIGUEZ COMMISSIONER PCT. 1
PAUL ELIZONDO COMMISSIONER PCT. 2
KEVIN A. WOLFF COMMISSIONER PCT. 3
THOMAS "TONNY" F. AKRISSON COMMISSIONER PCT. 4
RENEE D. GREEN, PE DIRECTOR OF PUBLIC WORKS/
COUNTY ENGINEER

PREPARED BY:
Poznecki Engineering
CAMARILLO

EXCEPTIONS: NONE
EQUATIONS: NONE
RAILROAD CROSSINGS: NONE
DESIGN SPEED = XX MPH
PROJECT LENGTH = XXXX LF

PROJECT MANAGER
INTERIM REVIEW ONLY
IMPORTANT: THIS DOCUMENT AND IT'S CONTENTS ARE NOT INTENDED FOR CONSTRUCTION AND SHOULD NOT BE USED OR REFERENCED FOR CONSTRUCTION.
PREPARED BY:
Poznecki Engineering
CAMARILLO

TRIBE REG. NO: F-483

(210) 349-4300 (FAX)
http://www.pozcam.com/
EXISTING VFW BLVD.
STA 30+75.50 TO STA 32+75.00
NTS

EXISTING VFW BLVD / E WHITE
STA 32+75.00 TO STA 44+08.00
NTS

EXISTING ROOSEVELT AVE
NTS
8. The contractor shall maintain all streets within project limits open to public use and free of obstructions to the full extent of his control and, in any event, shall not place, manufacture, maintain or allow to be placed, manufactured or maintained, any asphalt, etc., at any direct payment, with the cost to be included in the contract price.

9. The contractor shall be responsible for providing suitable access accommodations for school children and pedestrians.

10. The contractor shall provide access for delivery of mail by the U.S. Postal Service.

11. The contractor shall provide for access to residences and all buildings in the vicinity of the project area.

12. When construction work necessitates the utilization of vehicle lights or other signals, traffic control signals, or markings, a traffic controller shall be installed by the contractor in accordance with the latest Texas Manual for Uniform Traffic Control Devices for the project area, and the work shall be performed in accordance with these signals.

13. The contractor shall provide temporary traffic control devices, and it shall be the responsibility of the contractor to ensure that the devices are used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

14. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

15. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

16. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

17. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

18. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

19. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

20. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

21. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.

22. The contractor shall provide temporary traffic control devices on any public street or highway where a direct payment is to be made, and the devices shall be used and maintained in accordance with the latest Texas Manual for Uniform Traffic Control Devices.
INSTALL ADVANCE WARNING DEVICES AND SIGNS FOR THE PROJECT. BICYCLE TRAFFIC WILL FOLLOW SOLUTION DETOURS AND SEPARATE FACILITIES WILL BE SHARED DURING CONSTRUCTION.

PHASE I

MAINTAIN PROJECT SIGNS, INSTALL ADVANCE WARNING DEVICES AND SRA M EASURES.

SET UP TRAFFIC DETOUR FOR EASTBOUND VFW BLVD TRAFFIC. DETOUR EASTBOUND VFW BLVD TRAFFIC ON THE NORTHERN HALF OF VFW BLVD TO THE SOUTHERN SIDE OF VFW BLVD WHILE MAINTAINING ONE LANE IN EACH DIRECTION AT ALL TIMES. CONSTRUCT THE ROADWAY UP TO THE FIRST 1.5' LIFT OF TY D MAC, INCLUDING PROPOSED CURB AND SIDES.

CONSTRUCT THE WEST SIDE OF THE ROOSEVELT INTERSECTION AS SHOWN IN THE PLANS. INCLUDING CAGEY 6' IN AND EAST 6' IN AND MAIN STREET ONE LANE IN EACH DIRECTION AT ALL TIMES. DURING SHORT TERM OPERATIONS TRAFFIC MAY BE REDUCED TO A SINGLE TWO WAY LANE WITH THE PRESENCE OF POLICE OFFICERS. CONSTRUCT THE ROADWAY UP TO THE FIRST 1.5' LIFT OF TY D MAC, INCLUDING PROPOSED CURB AND SIDES.

PHASE II

SET UP TRAFFIC DETOUR FOR WESTBOUND VFW BLVD TRAFFIC. DETOUR WESTBOUND VFW BLVD TRAFFIC AT ALL TIMES. CONSTRUCT THE ROADWAY UP TO THE FIRST 1.5' LIFT OF TY D MAC.

CONSTRUCT THE EAST SIDE OF THE ROOSEVELT INTERSECTION AS SHOWN IN THE PLANS. MAIN STREET MAIN STREET ONE LANE IN EACH DIRECTION AT ALL TIMES. DURING SHORT TERM OPERATIONS TRAFFIC MAY BE REDUCED TO A SINGLE TWO WAY LANE WITH THE PRESENCE OF POLICE OFFICERS. CONSTRUCT THE ROADWAY UP TO THE FIRST 1.5' LIFT OF TY D MAC.

PLACE FINAL OVERLAY OF TOP 1.5' LIFT OF TY D MAC. USE SHORT TERM PAVEMENT MARKINGS TO DELINEATE TRAVEL LANES. PLACE FINAL STRIPING CONFIGURATION AS SHOWN IN TRAFFIC PLANS.

FINAL CLEANUP

PAYMENT

CUT, REMOVE, AND RESTORE PAYMENT WHEN CHANGED IN THE SEQUENCE OF WORK FOR CONSTRUCTION OF CROSS-DRAINAGE STRUCTURES WILL BE PAID FROM WORK ITEM 301, “FLEXIBLE PAVEMENT STRUCTURE REPAIR.”

TEMPORARY SPECIAL WORKING TIME FOR THE LOCATION SHOWN IN THE PLANS WILL BE PAID FOR UNDER WORK ITEM 561, “FLEXIBLE PAVEMENT STRUCTURE REPAIR.”

THE CONTRACTOR WILL BE RESPONSIBLE FOR THE INSTALLATION OF LOW PROFILE CONCRETE TRAFFIC BARREN IN FOR THESE WORKS. MATERIALS WILL BE PAID UNDER WORK ITEM 561.

ESTIMATED PROJECTS INCLUDE 560 LF OF LCP TYPE 2 AND 560 LF OF LCP TYPE 2.

ALL MATERIALS NEEDED FOR THE INSTALLATION OF LOW PROFILE CONCRETE TRAFFIC BARREN WILL BE SUBSIDIZED TO THE CONTRACTOR’S MATERIALS.

TEMPORARY PAVEMENT SHOWN IN THE PLANS WILL BE PAID FOR UNDER WORK ITEM 563, “CONSTRUCTION DETOURS.”

ALL OTHER WORK AND MATERIALS REQUIRED BY THIS PROVISIONS WILL BE PAID FOR DIRECTLY, BUT WILL BE SUBMITTED TO THE VARIOUS BID ITEMS OF THE CONTRACT, UNLESS OTHERWISE INDICATED IN THE PLANS OR SPECIFICATIONS.

INTERIM DESIGN ONLY

ENGINEER:

PUBLIC WORKS DEPARTMENT

ID# 170

TRAFFIC CONTROL PLAN

NOTES & SEQUENCE OF WORK

POZNECKI CAMARILLO
NOTES:
1. THE INFORMATION SHOWN ON THIS DRAWING CONCERNING TYPE AND LOCATION OF UNDERGROUND UTILITY LINES IS NOT GUARANTEED TO BE ACCURATE OR COMPLETE. THE CONTRACTOR IS RESPONSIBLE FOR MAKING HIS OWN INQUIRIES AND DETECTION OF UNDERGROUND UTILITIES AS NECESSARY TO AVOID DAMAGE.
2. THE CONTRACTOR WILL BE RESPONSIBLE FOR INSTALLATION OF STREET LIGHTS AND PAVING FACILITIES.
3. THE CONTRACTOR WILL BE RESPONSIBLE FOR INSTALLATION OF STREET LIGHTS AND PAVING FACILITIES.
4. THE CONTRACTOR WILL BE RESPONSIBLE FOR INSTALLATION OF STREET LIGHTS AND PAVING FACILITIES.
5. THERE WILL BE NO SEPARATE PAIRED ITEMS FOR ANY SECTIONS SHOWN ON THE PLANS OR REQUIRED BY INSPECTION.
6. ALL OFFSET CALLS OUTS ARE TO FACE OF CURB UNLESS OTHERWISE NOTED.
DESIGN AREAS - EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Area (ac.)</th>
<th>Runoff Coefficient</th>
<th>Tc (min)</th>
<th>Design Storm</th>
<th>Storm Quantity</th>
<th>Floodplain</th>
<th>Storm Drainage Area</th>
<th>Regulated Land</th>
<th>Steep Slope</th>
<th>Extreme Event</th>
<th>Total Inf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2A.7</td>
<td>0.67</td>
<td>21.68</td>
<td>1.00</td>
<td>3.49</td>
<td>146.36</td>
<td>1.10</td>
<td>9.50</td>
<td>107.56</td>
<td>1.25</td>
<td>7.64</td>
</tr>
<tr>
<td>2</td>
<td>70.26</td>
<td>0.73</td>
<td>28.46</td>
<td>1.10</td>
<td>2.88</td>
<td>51.25</td>
<td>1.10</td>
<td>5.10</td>
<td>83.00</td>
<td>1.25</td>
<td>8.27</td>
</tr>
<tr>
<td>3</td>
<td>13.15</td>
<td>0.75</td>
<td>32.62</td>
<td>1.00</td>
<td>2.61</td>
<td>60.92</td>
<td>1.10</td>
<td>4.17</td>
<td>91.23</td>
<td>1.25</td>
<td>9.47</td>
</tr>
<tr>
<td>4</td>
<td>26.73</td>
<td>0.75</td>
<td>48.38</td>
<td>1.00</td>
<td>3.80</td>
<td>166.22</td>
<td>1.15</td>
<td>7.35</td>
<td>212.91</td>
<td>1.25</td>
<td>8.27</td>
</tr>
<tr>
<td>5</td>
<td>88.20</td>
<td>0.75</td>
<td>48.38</td>
<td>1.00</td>
<td>2.80</td>
<td>166.22</td>
<td>1.15</td>
<td>7.35</td>
<td>212.91</td>
<td>1.25</td>
<td>8.27</td>
</tr>
</tbody>
</table>

DESIGN POINTS - EXISTING CONDITION

<table>
<thead>
<tr>
<th>Design Point</th>
<th>Drainage Area</th>
<th>Area (ac.)</th>
<th>Runoff Coefficient</th>
<th>Tc (min)</th>
<th>Design Storm</th>
<th>Storm Quantity</th>
<th>Floodplain</th>
<th>Storm Drainage Area</th>
<th>Regulated Land</th>
<th>Steep Slope</th>
<th>Extreme Event</th>
<th>Total Inf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 1.1, 1.2</td>
<td>157.90</td>
<td>0.73</td>
<td>57.66</td>
<td>1.10</td>
<td>2.72</td>
<td>282.72</td>
<td>1.10</td>
<td>3.40</td>
<td>435.99</td>
<td>1.25</td>
<td>4.43</td>
</tr>
<tr>
<td>2</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>57.66</td>
<td>1.10</td>
<td>2.72</td>
<td>282.72</td>
<td>1.10</td>
<td>3.40</td>
<td>435.99</td>
<td>1.25</td>
<td>4.43</td>
</tr>
<tr>
<td>3</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>57.66</td>
<td>1.10</td>
<td>2.72</td>
<td>282.72</td>
<td>1.10</td>
<td>3.40</td>
<td>435.99</td>
<td>1.25</td>
<td>4.43</td>
</tr>
<tr>
<td>4</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>57.66</td>
<td>1.10</td>
<td>2.72</td>
<td>282.72</td>
<td>1.10</td>
<td>3.40</td>
<td>435.99</td>
<td>1.25</td>
<td>4.43</td>
</tr>
<tr>
<td>5</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>57.66</td>
<td>1.10</td>
<td>2.72</td>
<td>282.72</td>
<td>1.10</td>
<td>3.40</td>
<td>435.99</td>
<td>1.25</td>
<td>4.43</td>
</tr>
<tr>
<td>6</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>57.66</td>
<td>1.10</td>
<td>2.72</td>
<td>282.72</td>
<td>1.10</td>
<td>3.40</td>
<td>435.99</td>
<td>1.25</td>
<td>4.43</td>
</tr>
</tbody>
</table>

OVERLAND FLOW - TK-55

<table>
<thead>
<tr>
<th>Design Point</th>
<th>Storm Drainage Area</th>
<th>Total Area (ac.)</th>
<th>NF, R-4 0-1%</th>
<th>MF, R-4 1-3%</th>
<th>COMM 0-15</th>
<th>COMM 1-3%</th>
<th>Weighted G</th>
<th>Total CSx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 1.1, 1.2</td>
<td>157.90</td>
<td>0.73</td>
<td>153.18</td>
<td>0.75</td>
<td>112.18</td>
<td>0.75</td>
<td>66.45</td>
</tr>
<tr>
<td>2</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>153.18</td>
<td>0.75</td>
<td>112.18</td>
<td>0.75</td>
<td>66.45</td>
</tr>
<tr>
<td>3</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>153.18</td>
<td>0.75</td>
<td>112.18</td>
<td>0.75</td>
<td>66.45</td>
</tr>
<tr>
<td>4</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>153.18</td>
<td>0.75</td>
<td>112.18</td>
<td>0.75</td>
<td>66.45</td>
</tr>
<tr>
<td>5</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>153.18</td>
<td>0.75</td>
<td>112.18</td>
<td>0.75</td>
<td>66.45</td>
</tr>
<tr>
<td>6</td>
<td>1, 1.1, 1.2</td>
<td>153.18</td>
<td>0.75</td>
<td>153.18</td>
<td>0.75</td>
<td>112.18</td>
<td>0.75</td>
<td>66.45</td>
</tr>
</tbody>
</table>

WIGHTED CSx VALUE CALCULATION - EXISTING CONDITIONS

This section calculates the weighted CSx value for the existing conditions, taking into account various factors such as the total area, NF, MF, CM, and weighted G. The resulting CSx value is essential for determining the capacity and flood risk management strategies in the area.
Drainage Areas - Proposed Conditions

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Area (ac.)</th>
<th>Runoff Coefficient</th>
<th>To/min</th>
<th>Drain</th>
<th>Soil Loss (ton/yr)</th>
<th>Erosion (CFS)</th>
<th>Flow (CFD)</th>
<th>Flow (tons)</th>
<th>Loss (tons)</th>
<th>Erosion (lbs)</th>
<th>Total (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24.74</td>
<td>0.67</td>
<td>1.00</td>
<td>4.09</td>
<td>13.36</td>
<td>0.09</td>
<td>1.25</td>
<td>1.64</td>
<td>1.15</td>
<td>6.37</td>
<td>21.72</td>
</tr>
<tr>
<td>B</td>
<td>30.78</td>
<td>0.73</td>
<td>1.00</td>
<td>3.88</td>
<td>17.83</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.40</td>
<td>22.92</td>
</tr>
<tr>
<td>C</td>
<td>29.75</td>
<td>0.75</td>
<td>1.00</td>
<td>3.72</td>
<td>26.96</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
</tr>
<tr>
<td>D</td>
<td>34.91</td>
<td>0.75</td>
<td>1.00</td>
<td>4.00</td>
<td>41.41</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
</tr>
<tr>
<td>E</td>
<td>39.78</td>
<td>0.75</td>
<td>1.00</td>
<td>2.64</td>
<td>35.35</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
</tr>
<tr>
<td>F</td>
<td>41.50</td>
<td>0.75</td>
<td>1.00</td>
<td>2.69</td>
<td>38.32</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
</tr>
<tr>
<td>G</td>
<td>31.21</td>
<td>0.75</td>
<td>1.00</td>
<td>2.83</td>
<td>38.32</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
</tr>
</tbody>
</table>

Design Points - Proposed Condition

<table>
<thead>
<tr>
<th>Design Point</th>
<th>Drainage Area (ac.)</th>
<th>Area (ac.)</th>
<th>Runoff Coefficient</th>
<th>To/min</th>
<th>Drain</th>
<th>Soil Loss (ton/yr)</th>
<th>Erosion (CFS)</th>
<th>Flow (CFD)</th>
<th>Flow (tons)</th>
<th>Loss (tons)</th>
<th>Erosion (lbs)</th>
<th>Total (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>31.17</td>
<td>0.75</td>
<td>1.00</td>
<td>3.42</td>
<td>24.67</td>
<td>0.06</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>34.91</td>
<td>0.75</td>
<td>1.00</td>
<td>3.72</td>
<td>26.96</td>
<td>0.09</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>34.91</td>
<td>0.75</td>
<td>1.00</td>
<td>3.72</td>
<td>26.96</td>
<td>0.09</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>39.78</td>
<td>0.75</td>
<td>1.00</td>
<td>4.00</td>
<td>41.41</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>41.50</td>
<td>0.75</td>
<td>1.00</td>
<td>2.64</td>
<td>35.35</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>41.50</td>
<td>0.75</td>
<td>1.00</td>
<td>2.69</td>
<td>38.32</td>
<td>0.10</td>
<td>1.23</td>
<td>1.68</td>
<td>1.12</td>
<td>6.53</td>
<td>23.11</td>
<td></td>
</tr>
</tbody>
</table>

Overland Flow - TR-55

<table>
<thead>
<tr>
<th>Design Point</th>
<th>Length (ft)</th>
<th>Slope (%)</th>
<th>C</th>
<th>Time Min</th>
<th>Length (ft)</th>
<th>Slope (%)</th>
<th>Velocity (fps)</th>
<th>Time Min</th>
<th>Length (ft)</th>
<th>Slope (%)</th>
<th>Velocity (fps)</th>
<th>Time Min</th>
<th>Total Time Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>200.00</td>
<td>0.50</td>
<td>0.75</td>
<td>19.50</td>
<td>641.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>240.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>370.00</td>
</tr>
<tr>
<td>B</td>
<td>220.00</td>
<td>0.50</td>
<td>0.75</td>
<td>22.00</td>
<td>641.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>240.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>370.00</td>
</tr>
<tr>
<td>C</td>
<td>250.00</td>
<td>0.50</td>
<td>0.75</td>
<td>25.00</td>
<td>641.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>240.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>370.00</td>
</tr>
<tr>
<td>D</td>
<td>300.00</td>
<td>0.50</td>
<td>0.75</td>
<td>30.00</td>
<td>641.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>240.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>370.00</td>
</tr>
<tr>
<td>E</td>
<td>350.00</td>
<td>0.50</td>
<td>0.75</td>
<td>35.00</td>
<td>641.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>240.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>370.00</td>
</tr>
<tr>
<td>F</td>
<td>400.00</td>
<td>0.50</td>
<td>0.75</td>
<td>40.00</td>
<td>641.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>240.00</td>
<td>0.50</td>
<td>2.00</td>
<td>4.00</td>
<td>370.00</td>
</tr>
</tbody>
</table>

Proposed Drainage Area Map Calculations

<table>
<thead>
<tr>
<th>Design Point</th>
<th>Drainage Areas</th>
<th>Total Area (ac.)</th>
<th>WP, R-4-1-12</th>
<th>IPP, R-4-1-12</th>
<th>COMM 0-12</th>
<th>COMM 1-36</th>
<th>Weighted G</th>
<th>Total C/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>31.17, 14.66</td>
<td>55.83</td>
<td>0.72</td>
<td>0.72</td>
<td>86.69</td>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>B</td>
<td>34.91, 14.66</td>
<td>50.57</td>
<td>0.75</td>
<td>0.75</td>
<td>86.69</td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>C</td>
<td>34.91, 14.66</td>
<td>50.57</td>
<td>0.75</td>
<td>0.75</td>
<td>86.69</td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>D</td>
<td>39.78, 14.66</td>
<td>54.44</td>
<td>0.75</td>
<td>0.75</td>
<td>86.69</td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>E</td>
<td>41.50, 14.66</td>
<td>56.16</td>
<td>0.75</td>
<td>0.75</td>
<td>86.69</td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>F</td>
<td>41.50, 14.66</td>
<td>56.16</td>
<td>0.75</td>
<td>0.75</td>
<td>86.69</td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
</tbody>
</table>

Notes
- Please review the calculations and proposed drainage area map carefully.
- The area calculations have been rounded to the nearest 0.1 ac. and the C/A has been rounded to the nearest 0.01 ac.
- The proposed drainage area map is based on the calculations presented above.

Poznecki-Camarillo

Bexar County Public Works Department

Flood Control Division

Bexar County, Texas

901 S. Frio Street, Room 220

210-300-1240

Flood Risk Advisory

Interim Relief Only

Document is for interim relief and not for construction, building, or property purchase.

Engineer: Fernando Camarillo

R.E. No.: 67-12

1111 Bexar

Date:

VFW Blvd Segment 2

Proposed Drainage Area Map Calculations
Appendix B – Survey Information For Proposed ROW
Mete and Bounds Description
for a
0.005 Ac. Tract

Being 0.005 acre of land out of a 0.63 acre tract recorded in Volume 4401, Page 315 of the Official Public Records of Real Property of Bexar County, Texas; said 0.63 acre tract being described as the Southeast irregular part of Lot 2, New City Block 8619, Pecan Grove Addition Subdivision recorded in Volume 642, Page 306 of the Deed and Plat Records of Bexar County, Texas, and a triangular part of old Tract 6, New City Block 8619, being a tract out of San Jose Mission Lands, San Antonio, Bexar County, Texas; said 0.005 acre tract being more particularly described as follows:

Beginning at a set ½” iron pin with yellow cap labeled “PCI” (hereinafter referred to as “IP W/YC”) located at the northeasterly end of a right-of-way cut-back line from the west right-of-way line of Roosevelt Avenue (U.S. Highway 281 South) to the northeast right-of-way line of Dagley Avenue;

1. Thence S 31°25'44" W, 10.69 feet departing the west right-of-way line of Roosevelt Avenue (U.S. Highway 281 South) and continuing along the said right-of-way cut-back line to a set IP W/YC located at the southwesterly end of the said right-of-way cut-back line; said IP W/YC being the most southerly corner of the said 0.63 acre tract and of the tract herein described;

2. Thence N 48°27'17" W, 18.86 feet departing the said right-of-way cut-back line and continuing along the northeast right-of-way line of Dagley Avenue to a set IP W/YC being the most westerly corner of the tract herein described;

3. Thence N 65°12'46" E, 21.58 feet departing the said northeast right-of-way line to a set IP W/YC located on the west right-of-way line of Roosevelt Avenue (U.S. Highway 281 South); said IP W/YC being the most northerly corner of the tract herein described;
4. Thence S 00°25'16" E, 12.43 feet along the said west right-of-way line to the Point of Beginning and containing 0.005 acre of land (221 sq. ft.).

A plat of even date accompanies this metes and bounds description.

Richard J. Solis
Registered Professional Land Surveyor
No. 4602
November 18, 2011
POZNECKI - CAMARILLO, INC.
5835 CALLAGHAN RD. / SUITE 200 SAN ANTONIO, TEXAS 78228 (210) 349-3273 ENGINEERING SURVEYING ENVIRONMENTAL

LINE DATA TABLE

<table>
<thead>
<tr>
<th>NO.</th>
<th>BEARING</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>S31°25'44"W</td>
<td>10.69</td>
</tr>
<tr>
<td>L2</td>
<td>N45°27'17"W</td>
<td>18.85</td>
</tr>
<tr>
<td>L3</td>
<td>N65°12'46"E</td>
<td>21.58</td>
</tr>
<tr>
<td>L4</td>
<td>S00°23'16"E</td>
<td>12.43</td>
</tr>
</tbody>
</table>

NOTES:
1. "SHP" DENOTES SET 1/2" IRON PIN WITH YELLOW CAP LABELED "POZ."
2. "O.P.R.R.P.B.C.TX." - OFFICIAL PUBLIC RECORDS OF REAL PROPERTY OF BEXAR COUNTY, TEXAS.
3. "D.&P.R.B.C.TX." - DEED AND PLAT RECORDS OF BEXAR COUNTY, TEXAS.

DIRECTIONAL CONTROL BASIS:
ALL BEARINGS SHOWN ARE BASED UPON THE TEXAS STATE PLANE SYSTEM (SOUTH CENTRAL ZONE 83) AS DETERMINED BY GLOBAL POSITIONING SYSTEM (GPS).

PLAT SHOWING:
Being 0.005 acre of land out of a 0.63 acre tract recorded in Volume 840, Page 315 of the Official Public Records of Real Property of Bexar County, Texas; said 0.63 acre tract being described as the Southeast Irregular part of Lot 2, New City Block 8619, Pecan Grove Addition Subdivision recorded in Volume 842, Page 306 of the Deed and Plat Records of Bexar County, Texas, and a triangular part of old Tract 6, New City Block 8619, being a tract out of San Jose Mission Lands, San Antonio, Bexar County, Texas.

REFERENCES:
VOL. 10042, PG. 362 (O.P.R.R.P.B.C.TX.)
VOL. 4401, PG. 315 (O.P.R.R.P.B.C.TX.)
VOL. 842, PG. 306 (D.&P.R.B.C.TX.)

JOB NO.: 10017
DRAWN BY: TALAMANTEZ
DRAW FILE: (REF. DATEGSTAMP)

STATE OF TEXAS
COUNTY OF BEXAR
I HEREBY CERTIFY THAT THE ABOVE PLAT IS TRUE AND CORRECT ACCORDING TO AN ACTUAL SURVEY MADE ON THE GROUND BY PERSONNEL WORKING UNDER MY SUPERVISION.

THIS 18th DAY OF November 2011, A.D.

RICHARD J. SOLIS
R.P.L.S. NO. 4602