INTENSIVE ARCHAEOLOGICAL SURVEY OF THE PROPOSED WHEATLEY HEIGHTS SPORTS COMPLEX, SAN ANTONIO, BEXAR COUNTY, TEXAS

Prepared for

EASTSIDE CHRISTIAN ACTION GROUP
17300 Henderson Pass, Suite 110
San Antonio, Texas 78232

Prepared by

Christian T. Hartnett
with contributions by Ken Lawrence

SWCA ENVIRONMENTAL CONSULTANTS
4407 Monterey Oaks Blvd.
Building 1, Suite 110
Austin, Texas 78749
www.swca.com

Principal Investigator

Christian T. Hartnett

Texas Antiquities Permit No. 5691
SWCA Project Number 16418-401-AUS
SWCA Cultural Resources Report No. 10-312

August 2, 2010
ABSTRACT

On behalf of the Eastside Christian Action Group (ECAG) and the City of San Antonio, Texas, (COSA) SWCA Environmental Consultants (SWCA) conducted an intensive archaeological survey of a proposed 150-acre development site in northeastern San Antonio, Texas. ECAG is planning to construct a sports complex and recreation facilities to serve the surrounding community. The complex, broken into a northern and southern section, is located approximately 175 m east of Interstate Highway (IH) 10 and 50 m south of Tamarak Road along Salado Creek. The northern portion of the project area, comprising 80 acres, is situated in a heavily wooded area broken up by several large clearings. The southern portion of the project area, comprising approximately 36 acres, is partly within an area of previously occupied by single family homes and partly within a heavily wooded area along the floodplain of Salado Creek, just east of a housing development. As COSA, the ultimate land owner, is a political subdivision of the State of Texas, cultural resource investigations were conducted to satisfy the requirements of the Antiquities Code of Texas (Permit No. 5691). At this time and for the foreseeable future, there is no federal funding, permitting, or entities involved in this undertaking. The Area of Potential Effects (APE) is defined as the entire 150-acre development site with depth of impact ranging from 1–5 feet. The investigations included a thorough background review and an intensive pedestrian survey with subsurface investigations.

The background review determined that a portion of the northern and southern sections have been previously surveyed where it abuts Salado Creek. However, there are no previously recorded archaeological sites within the survey area. A review of historic aerials and maps dating from 1845–2008 show intensive use of the project area for agricultural, residential, and recreation purposes.

Overall, the intensive pedestrian survey revealed the project area to be heavily impacted by construction activities within the past 40–50 years. Of the 47 shovel tests excavated across the project area, one was positive for cultural material. Soils consisted predominately of a loamy clay to silty clay that ranged in color from reddish-brown to very dark grayish-brown and shovel tests were terminated at depths ranging from 10–60 cmbs due to compact dense soils or gravels. An additional 12 mechanical trenches were excavated in the northern portion of the project area to evaluate the Salado Creek terraces (i.e., T-1 and T-2) and uplands. These investigations did not encounter any cultural materials predating the modern era. The trench excavations did observe prevalent disturbance ranging from 20–130 cm in depth. Although there are subsurface portions of the northern project area that remain reasonably intact, no evidence of cultural materials or sites was encountered.

SWCA’s intensive cultural resources surveys determined that the 150-acre project area does not contain any prehistoric or historic resources. As such, the proposed undertaking will have no effects on significant cultural resources and SWCA recommends no further archaeological investigations within the APE. No artifacts were collected, thus nothing was curated.
ACKNOWLEDGEMENTS

Christian T. Hartnett served as Principal Investigator, Project Manager, and Lead Surveyor for the duration of the project, ably overseeing overall logistics and organization, and managing reporting and agency coordination. John D. Lowe, Matthew C. Stotts, and Ken Lawrence served as field technicians admirably performing field investigations on July 12, 13, and 19, 2010 and subsequent report writing. Christian T. Hartnett and Carole Carpenter expertly produced all field and report maps for the project.
INTRODUCTION

On behalf of the Eastside Christian Action Group (ECAG) and the City of San Antonio (COSA), SWCA Environmental Consultants (SWCA) conducted an intensive archaeological survey of a 150-acre development site in eastern San Antonio, Texas (Figure 1). ECAG intends to develop the site as a sports and recreation complex to serve to the local community. Per the status of COSA as the property owner and as a political subdivision of the State of Texas, cultural resource investigations were conducted to satisfy the requirements of the Antiquities Code of Texas (Permit No. 5691). At this time, there is no federal funding, permitting, or entities involved in this undertaking. The project area is divided into two parcels, north and south of Salado Creek comprising 80 and 36 acres respectively. The Area of Potential Effects (APE) is defined as the combined entire 150-acre project area, and will have a depth of impact of 1–5 feet.

The purpose of the work was to locate and identify all prehistoric and historic archaeological sites in the APE, establish vertical and horizontal site boundaries as appropriate with regard to the project area, and evaluate the significance and eligibility of any site recorded within the property for designation as a State Archeological Landmark (SAL). SWCA archaeologists conducted the fieldwork on July 12 and 13, and on July 19, 2010.

DEFINITION OF STUDY AREA

The 150-acre project area is located in eastern San Antonio, Bexar County, Texas. The project area is broken up into two sections, north and south. The northern section of 80 acres is located approximately 330 m southwest of the intersection of Interstate Highway (IH) 10 and East Houston Street. It is bordered on the east and west by thick wooded areas. To the north is Tamarak Drive and to the south Salado Creek. This section is within the boundaries of Martin Luther King Park. Proposed development within this section will include the construction of a football and track and field stadium, parking, restrooms, concessions and associated infrastructure, resulting in subsurface disturbances of 3–5 feet (Figure 2).

The southern section, located 250 m southwest of the intersection of Brooksdale Road and Martin Luther King Drive is bordered on the east and south by Salado Creek and the north and west by housing developments. Proposed development within this southern portion will be limited to the construction of a small administration building, surface parking, soccer fields, walking track utilizing existing infrastructure, resulting in subsurface disturbance of only 1–2 feet. Any utilities in the southern section will be installed in existing, disturbed utility easements (Figure 3).

Much of the project area is dominated by very dense vegetation, consisting of a mixture of live oak, mature mesquite, bamboo, poison ivy, and mixed grasses. As a result, surface visibility was very poor, ranging from 0–20 percent. Large portions of both the northern and southern sections have been heavily impacted by previous construction activities, including the demolition of numerous houses and associated roadways, the installation and abandonment of utility lines, and the construction of baseball diamonds.

ENVIRONMENTAL SETTING

GEOLOGY

Geologically, the project area is located in Fluvial terrace deposits (Qt). This formation is Pleistocene-age terrace deposits comprised
Figure 1. Project Location Map.

Background: USGS 7.5-minute San Antonio East
SWCA PN. 16418, Production: July, 2010, CTH
Figure 2. Soils within project area.
of gravel, sand, silt, and clay. Low terrace deposits are mostly above flood level of entrenched streams. Generally, these areas along most rivers are deeply entrenched and are no longer active floodplains; however, there are several exceptions, including the San Antonio River which is still an active flood plain (Barnes 1982).

SOILS

There are five soil types mapped within the project area: Hilly gravelly land (HgD), Houston black clay, terrace 1 to 3 percent slopes (HtB), Patrick soils, 1 to 3 percent slopes (PaB), Venus clay loam, 1 to 3 percent slopes (VcB), and Frio clay loam, 0 to 1 percent slopes (Fr) (Taylor et al. 1991) (Figure 4).

Hilly gravelly (HgD) land is found on knolls and narrow ridges throughout Bexar County, but is predominantly found in the south and western parts of the county. These ridges are erosion resistant remnants of old waterways that rise above Houston black and Lewisville soils. This land consists of beds of caliche or gravelly, very strongly calcareous, loamy alluvium 10–20 feet thick. The upper 3–12 inches is typically hard and platy. On some of the level areas of the unit is a mantle of limy, dark grayish-brown loam or clay. Along the slopes, there is typically no soil present (Taylor et al. 1991:17).

Houston black clay, terrace, 1 to 3 percent slopes (HtB) is found on long narrow slopes adjacent to waterways. The surface layer is a dark gray clay 34 inches thick. Below, to a depth of 54 inches, is a gray clay that is blocky and crumbly in structure (Taylor et al. 1991:21).

Patrick soils, 1 to 3 percent slopes (PaB) occur on escarpments between first and second terraces, above flood plains that drain the limestone prairies in northern Bexar County. The surface layer can be a clay loam, gravely clay loam, or loam 10 inches thick. The subsurface layer can be a clay loam or loam (Taylor et al. 1991:27).

Venus clay loam, 1 to 3 percent slopes (VcB) is found on gentle slopes between upland terraces and flood plains. The surface layer is approximately 14 inches thick and a clay loam. The subsurface layer is about 20 inches thick and also a clay loam, but contains less clay than the upper layer (Taylor et al. 1991:34). Frio clay loam, 0 to 1 percent slopes (Fr) is found on floodplains of the Medina and San Antonio rivers as well as and their tributaries. The surface is typically uneven and often dissected by old stream channels. The surface layer is light brownish-gray and 20 inches thick. Below 25 inches in depth the soil becomes a stratified sandy loam to clay loam (Taylor et al. 1991:16)

CULTURAL HISTORY OF CENTRAL TEXAS AND THE SAN ANTONIO REGION

The project area lies at the intersection of two archaeological regions, the Central Texas and South Texas regions. These regions are recent analytical constructs but they do contain a measure of distinct, spatial, cultural information (Collins 2004; Prewitt 1981). In this study, the project area is included with the Central Texas region.

Following Collins (2004), the archeological periods in central and south Texas are, Paleoindian, Archaic, Prehistoric and Historic. Subperiods of the Paleoindian period are early and late. The Archaic subperiods are Early, Middle, and Late Archaic. The date ranges for archaeological periods uses radiocarbon years B.P., following the convention of Collins (1995).

The archaeological record of the Central Texas region is known from decades of
Figure 3. Current design plans for northern portion of project area.
Figure 4. Current design plans for southern portion of project area.
investigations of stratified open air sites and rock shelters throughout the Edwards Plateau, its highly dissected eastern and southern margins, and the adjoining margins of physiographic regions to the east and south (see Collins [2004] for review). Traditionally, the Central Texas region has included the Balcones Canyonlands and Blackland Prairie—that is, areas northwest and southeast of San Antonio (e.g., Prewitt 1981; Suhm 1960). These two areas are on the periphery of the region, and their archaeological records and projectile point style sequences contain elements that suggest influences from, and varying degrees of, contact over time with other areas such as the Lower Pecos and Gulf Coastal Plain (Collins 2004; Johnson and Goode 1994). Archaeological sites in these two areas of Bexar County that have contributed important information include the Richard Beene site at Applewhite Reservoir (McGraw and Hindes 1987; Thoms and Mandel 1992; Thoms et al. 1996), the Cibolo Crossing site at Camp Bullis (Kibler and Scott 2000), the Panther Springs Creek site in Bexar County (Black and McGraw 1985), the Jonas Terrace site in Medina County (Johnson 1995), the Camp Pearl Wheat site in Kerr County (Collins et al. 1990), 41BX1 (Lukowski 1988) and 41BX300 (Katz 1987) in Bexar County, and several sites at Canyon Reservoir (Johnson et al. 1962). For more-complete bibliographies concerning archaeological work done in the region, see Black (1989), Collins (1995), and Johnson and Goode (1994).

PALEOINDIAN PERIOD

Paleoindian sites occur in a variety of topographic settings and include both surface and deeply buried sites, rockshelter sites, and isolated artifacts spanning over 2,500 years of occupations (ca. 11,500–8,800 B.P.) in the Central Texas region (Collins 2004:116). The period is often described as having been characterized by small but highly mobile bands of foragers who were specialized hunters of Pleistocene megafauna. But Paleoindians probably used a much wider array of resources (Meltzer and Bever 1995:59), including small fauna and plant foods. Faunal remains from Kincaid Rockshelter and the Wilson-Leonard site (41WM235) support this view (Bousman 1998, Bousman et al. 2004, Collins 1998; Collins et al. 1989).

Collins (1995, 2004) divides the Paleoindian period into early and late subperiods. Two main projectile point styles, Clovis and Folsom, are included in the early subperiod. A third type, Plainview, may be contemporary with Folsom. Clovis chipped stone artifact assemblages, including the diagnostic fluted lanceolate Clovis point, were produced by bifacial, flake, and prismatic-blade techniques on high-quality and oftentimes exotic lithic materials (Collins 1990). Along with chipped stone artifacts, Clovis assemblages include engraved stones, bone and ivory points, stone bolas, and ochre (Collins 2004:116; Collins et al. 1992). Clovis points are found evenly distributed along the eastern edge of the Edwards Plateau, where the presence of springs and outcrops of chert-bearing limestone are common (Meltzer and Bever 1995:58). Analyses of Clovis artifacts and site types suggest that Clovis peoples were well-adapted, generalized hunter-gatherers with the technology to hunt larger game but not solely rely on it.

In contrast, Folsom tool kits—consisting of fluted Folsom points, thin unfluted (Midland) points, large thin bifaces, and end scrapers—are more indicative of specialized hunting, particularly of bison (Collins 2004:117). Folsom points have been recovered from Kincaid Rockshelter (Collins et al. 1989) and Pavo Real (Collins et al. 2003; Henderson and Goode 1991). Folsom point distributions, both
the frequency and spatial patterning, differ from the Clovis patterns, suggesting a shift in adaptation patterns (Bever and Meltzer 2007; Meltzer and Bever 1995:60, 74).

Postdating Clovis and Folsom points in the archaeological record are a series of dart point styles (primarily unfluted lanceolate darts) for which the temporal, technological, or cultural significance is unclear. Often, the Plainview type name is assigned these dart points, but Collins (2004:117) has noted that many of these points typed as Plainview do not parallel Plainview type-site points in thinness and flaking technology. At Wilson-Leonard, the Paleoindian projectile point sequence includes an expanding-stem dart point termed Wilson, which dates to ca. 10,000–9,500 B.P. Postdating the Wilson component is a series of unfluted lanceolate points referred to as Golondrina-Barber, St. Mary’s Hall, and Angostura, but their chronological sequence is poorly understood.

By the Late Paleoindian subperiod, aspects of Archaic lifeways became increasingly entrenched, and in many ways, the Late Paleoindian subperiod is a transition between the early Paleoindian and succeeding Archaic periods (Collins 2004:118). During this period there is evidence of a diverse subsistence practice, a variety of lithic tools and ritualized burial practices (Bousman 1998; Bousman et al. 2004).

Archaic Period

The longest period is the Archaic, beginning between 8,800 and 8,000 B.P. and extending until approximately 1,200 B.P. when the widespread use of the bow and arrow occurs. Collins (1995, 2004) and Collins et al. (1989) use 8,800 B.P. as the approximate starting date for the Early Archaic where there is a shift toward hunting and gathering of a wider array of animal and plant resources and a decrease in group mobility (Willey and Phillips 1958:107–108).

In the eastern and southwestern United States and on the Great Plains, development of horticultural-based, semi-sedentary to sedentary societies succeeds the Archaic period. In these areas, the Archaic truly represents a developmental stage of adaptation as Willey and Phillips (1958) define it. For central Texas, this manifestation of the Archaic is somewhat problematic. An increasing amount of evidence suggests that Archaic-like adaptations were in place before the Archaic (see Collins 1998, 2004:118; Collins et al. 1989) and these practices continued into the succeeding Late Prehistoric period (Collins 1995:385; Prewitt 1981:74).

Early Archaic

The use of 8,800 B.P. as a beginning date for the Early Archaic appears to be at the extreme older date range. It is just as probable that the date is closer to 8,000 B.P., which is closer to the beginning date of the Early Archaic for south Texas, according to Hester (2004).

Early Archaic (8,800–6,000 B.P.) lithic assemblages can be diverse, with a greater variety of stone tool types than during the previous Paleoindian period (Weir 1976:115–122), suggesting that populations were highly mobile and population densities were probably low. It has been noted that there is a concentration of Early Archaic sites along the eastern and southern margins of the Edwards Plateau (Johnson and Goode 1994; McKinney 1981; Story 1985). This distribution may indicate drier and/or more extreme climatic conditions at the time, given that these environments have more reliable water sources and a more diverse resource base than other parts of the region. Early Archaic projectile point styles include Hoxie, Gower, Wells, Martindale, and Uvalde. Clear Fork and
Guadalupe bifaces and a variety of other bifacial and unifacial tools are common to Early Archaic assemblages. The increasing regional variation in tool styles also suggests increasing territorialism that reduced exchanges of technology and interaction between distant and possibly local groups (Oksanen 2008).

Construction and use of rock hearths and ovens, which had been limited during late Paleoindian times, became commonplace. Such a practice probably was related to cooking plant foods, particularly roots and bulbs, many of which must be subjected to prolonged periods of cooking to render them consumable and digestible (Black et al. 1997:257; Wandsnider 1997; Wilson 1930).

Significant Early Archaic sites include the Richard Beene site in Bexar County (Thoms and Mandel 2007; Thoms and Mandel 1992), the Gatlin site in Kerr County (Houk et al. 2008), Wilson-Leonard (Collins et al. 1998), the Icehouse site (41HY161) in San Marcos and the Youngsport site in Bell County. The end of the Early Archaic is a poorly documented transition. The convention of 6,000 B.P. intends to mark the appearance of both a changing environment and the appearance of specialized technology associated with bison hunting.

MIDDLE ARCHAIC

During the Middle Archaic period (6,000–4,000 B.P.), the number and distribution of sites, as well as their size, probably increased as population densities grew (Prewitt 1981:73; Weir 1976:124, 135). Macrobands may have formed at least seasonally, or more small groups may have used the same sites for longer periods (Weir 1976:130–131). Development of burned rock middens toward the end of the Middle Archaic suggest a greater reliance on plant foods, although tool kits still imply a considerable dependence on hunting (Prewitt 1985:222–226). Middle Archaic projectile point styles include Bell, Andice, Taylor, Baird, Nolan, and Travis. Bell and Andice points reflect a shift in lithic technology from the preceding Early Archaic Martindale and Uvalde point styles (Collins 2004:119). Johnson and Goode (1994:25) suggest that the Bell and Andice darts are parts of a specialized bison-hunting tool kit. They also believe that an influx of bison and bison-hunting groups from the Eastern Woodland margins during a slightly more mesic period marked the beginning of the Middle Archaic.

Although no bison remains were detected, Bell and Andice points were recovered from the Cibolo Crossing (Kibler and Scott 2000), Panther Springs Creek, and Granberg II (Black and McGraw 1985) sites in Bexar County. Bison were either absent or decreased drastically in number as more-xeric conditions returned during the late part of the Middle Archaic. Later Middle Archaic projectile point styles represent another shift in lithic technology (Collins 2004:120; Johnson and Goode 1994:27). At the same time, a shift to more-xeric conditions saw the burned rock middens develop, probably because intensified use of a specific resource (geophytic or xerophytic plants) or resource patches meant the debris of multiple rock ovens and hearths accumulated as middens on stable to slowly aggrading surfaces, as Kelley and Campbell (1942) suggested many years ago. Johnson and Goode (1994:26) believe that the dry conditions promoted the spread of yuccas and sotols, and that it was these plants that Middle Archaic peoples collected and cooked in large rock ovens.

LATE ARCHAIC

During the succeeding Late Archaic period (4,000 to 1,300–1,200 B.P.), populations continued to increase (Prewitt 1985:217).
Within stratified Archaic sites such as Loeve-Fox, Cibolo Crossing, and Panther Springs Creek, the Late Archaic components contain the densest concentrations of cultural materials. Establishment of large cemeteries along drainages suggests certain groups had strong territorial ties (Story 1985:40). A variety of projectile point styles appeared throughout the Late Archaic period. Middle Archaic subsistence technology, including the use of rock and earth ovens, continued into the Late Archaic period. Collins (2004:121) states that, at the beginning of the Late Archaic period, the use of rock ovens and the resultant formation of burned rock middens reached its zenith and that the use of rock and earth ovens declined during the latter half of the Late Archaic. There is, however, mounting chronological data that midden formation culminated much later and that this high level of rock and earth oven use continued into the early Late Prehistoric period (Black et al. 1997:270–284; Kleinbach et al. 1995:795).

The use of rock and earth ovens (and the formation of burned rock middens) for processing and cooking plant foods suggests that this technology was part of a generalized foraging strategy. However, at times during the Late Archaic, this generalized foraging strategy appears to have been marked by shifts to a specialized economy focused on bison hunting (Kibler and Scott 2000:125–137). Castroville, Montell, and Marcos dart points are elements of tool kits often associated with bison hunting (Collins 1968). Archaeological evidence of this association is seen at Bonfire Shelter in Val Verde County (Dibble and Lorrain 1968), Jonas Terrace (Johnson 1995), Oblate Rockshelter (Johnson et al. 1962:116), John Ischy (Sorrow 1969), and Panther Springs Creek (Black and McGraw 1985).

The Archaic period represents a hunting and gathering way of life that was successful and that remained virtually unchanged for more than 7,500 years. This notion is based in part on fairly consistent artifact and tool assemblages through time and place and on resource patches that were used continually for several millennia, as the formation of burned rock middens shows. This pattern of generalized foraging, though marked by brief shifts to a heavy reliance on bison, continued almost unchanged into the succeeding Late Prehistoric period.

LATE PREHISTORIC PERIOD

Introduction of the bow and arrow and, later, ceramics into Central Texas marked the Late Prehistoric period. Population densities dropped considerably from their Late Archaic peak (Prewitt 1985:217). Subsistence strategies did not differ greatly from the preceding period, although bison again became an important economic resource during the late part of the Late Prehistoric period (Prewitt 1981:74). Use of rock and earth ovens for plant food processing and the subsequent development of burned rock middens continued throughout the Late Prehistoric period (Black et al. 1997; Kleinbach et al. 1995:795). Horticulture came into play very late in the region but was of minor importance to overall subsistence strategies (Collins 2004:122).

In central Texas, the Late Prehistoric period generally is associated with the Austin and Toyah phases (Jelks 1962; Prewitt 1981:82–84). Austin and Toyah phase horizon markers, Scallorn-Edwards and Perdiz arrow points, respectively, are distributed across most of the state. Violence and conflict often marked introduction of Scallorn and Edwards arrow points into central Texas—many excavated burials contain these point tips in contexts indicating they were the cause of death (Prewitt 1981:83). Subsistence strategies and technologies (other than arrow points) did not change much from the preceding Late Archaic period. Prewitt’s (1981) use of the term
“Neoarchaic” recognizes this continuity. In fact, Johnson and Goode (1994:39–40) and Collins (2004:122) state that the break between the Austin and Toyah phases could easily and appropriately represent the break between the Late Archaic and the Late Prehistoric.

Around 1,000–750 B.P., slightly more-xeric or drought-prone climatic conditions returned to the region, and bison came back in large numbers (Huebner 1991; Toomey et al. 1993). Using this vast resource, Toyah peoples were equipped with Perdiz point-tipped arrows, end scrapers, four-beveled-edge knives, and plain bone-tempered ceramics. Toyah technology and subsistence strategies represent a completely different tradition from the preceding Austin phase. Collins (1995:388) states that formation of burned rock middens ceased as bison hunting and group mobility obtained a level of importance not witnessed since Folsom times. Although the importance of bison hunting and high group mobility hardly can be disputed, the argument that burned rock midden development ceased during the Toyah phase is tenuous. Black et al. (1997) claim that burned rock midden formation, although not as prevalent as in earlier periods, was part of the adaptive strategies of Toyah peoples.

Historic Period

The historic period in Texas began in 1528 near Galveston Island with the encounter between the Pánfilo de Narváez expedition and a Karankawa group. After disaster befell the expedition, one of the members, Cabeza de Vaca, spent six years of wandering through Texas in the 1530s. Cabeza de Vaca traversed coastal Texas and parts of the interior and recounted in great ethnographic detail the peoples he encountered. Based in part from his exploits and suggestions of a kingdom of gold, the Coronado expedition was formed to search for a northern Cuzco or Teotihuacan, and by 1540 it crossed into New Mexico, and into Texas (Fehrenbach 2005).

The following historic discussion focuses on the San Antonio region and the significance of this region during the historic period and the creation of Texas independence, sovereignty and statehood.

Early Historic to 1718

The Native Americans living in the missions along the San Antonio River were referred to by the Spanish as Coahuiltecas. The name comes from a southern tribe named after the Spanish province of “Coahuila”, which later became a Mexican state. The term Coahuiltecan is a generalized term and makes no distinction between language and cultural differences of the tribes living in the area. The abundant berries, nuts and fish made San Pedro Springs an attractive place to camp and/or live (Johnston 1947).

The San Antonio area was first explored in 1691 by the Governor of the Spanish Province of Texas, Domingo Terán de los Ríos, and Father Damián Massenet. The pair traveled to San Pedro Springs where they encountered a hunter-gather tribe named Payaya. In their village named Yanaguana, the Payaya lived in simple huts made of brushwood and grass. The river and village were renamed after San Antonio de Padua by Terán and Massenet (Johnston 1947).

Further Spanish exploration was conducted in 1709 by Father Antonio de San Buenaventura y Olivares. Father Olivares was the first to express interest in setting up a mission in the San Antonio area (Fehrenbach 2005; Johnston 1947).
SPANISH TEXAS: 1718 TO 1820

San Antonio de Béxar Presidio, located on the east bank of the San Antonio River, was founded in 1718. In the same year, Mission San Antonio de Valero, later known as the Alamo, was transferred from the Rio Grande by Father Olivares. This mission was named after St. Anthony of Padua and the Marquis de Valero, the Viceroy of New Spain. The church was originally constructed of adobe and the huts of wood and thatch (Johnston 1947; Schoelwer 2008).

La Villita, an Indian village about 1,500 feet south of the Alamo, was built around 1722. The Indians from the Mission San Antonio de Valero lived in La Villita in crude huts called “jacales” (Johnston 1947:31). Jacales were typically constructed with an upright line of poles sunk into a footing ditch and then woven horizontally with smaller sticks. The walls were subsequently covered with adobe. Later, La Villita served as a home to the families of soldiers who protected the mission. (Johnston 1947; Magruder 2008).

The villa of San Fernando de Béxar was founded in 1731 by the Canary Islanders. The Canary Islanders were a small group, totaling 56 people, sent by Spain to colonize the province of Texas. Under the leadership of Juan Leal Goraz, the village of San Fernando de Béxar was founded near the Presidio de Béxar and the first civil government in Texas was formed.

In 1773, San Antonio de Béxar became the capital of Spanish Texas. By 1790, most of the Indians living in San Antonio had either already abandoned the missions or died from diseases like smallpox and the measles brought in by Europeans. Mission San Antonio de Valero was secularized in 1794 and mission land, excluding the church and convent, was divided amongst the few Indians that remained in the area (Johnston 1947).

Spain and Mexican revolutionists fought over San Antonio throughout the early 1800s. The Casas revolt of 1811 ended with the assertion of power by the Spanish regime. Captain Juan Bautista de las Casas went against the Spanish authority and was arrested and sent to Mexico. In Monclova, he was tried and found guilty of treason and shot to death. His head was sent back to San Antonio as a sign of defeat (Caldwell 2008).

San Antonio declared for Mexican independence in 1813 but was recaptured by Royalist forces in the battles of Alazán Creek and Medina. During this period of unrest, conditions in Texas were becoming worse. Inadequate provisions and neglected agricultural fields along with the fear of political and military upheavals forced many Texans to abandon their homes and move elsewhere. (Fehrenbach 2005; Heusinger 1951).

TEXAS REVOLUTION, INDEPENDENCE AND STATEHOOD: 1820 TO 1848

During the Texas Revolution, San Antonio was the site of several battles, including the siege of Bexar and the battle of the Alamo (Fehrenbach 2005).

General Martín Perfecto de Cós, along with 650 men, fortified the plaza of San Antonio de Béxar west of the San Antonio River and the Alamo to the east. Texan volunteers arrived in San Antonio on October 12, 1835 to set up camp. Upon hearing the Mexican army’s morale and rations were low a council was held to decide whether to attack. Commanding Officer, Edward Burleson and most of the other officers voted to end the siege. One man spoke up and asked “Who will go with Old Ben Milam into San Antonio?” (House
Approximately 300 men joined Milam and the battle finally began on December 5, 1835. General Cós focused his troops at the Alamo but was unsuccessful in holding San Antonio. By the morning of December 9, 1835, Cós surrendered (House 1949).

On February 23, 1836, nearly 150 American volunteers took refuge from the approaching Mexican Army in the Alamo Mission in San Antonio, Texas under orders from Colonel William B. Travis (Hatch 1999). A standoff between the Texas Revolutionary Army and the Mexican Army, lasting 13 days, ended in complete annihilation of the Alamo defenders and a victory for the Mexican General Antonio Lopez de Santa Anna (Huffines 1999).

The Alamo Garrison had been acquired following the defeat of Mexican General Martin Perfecto de Cós’ army in the December 1835 Battle of San Antonio. The subsequent formation of the Matamoros Expedition cost the Alamo much needed supplies and men. This expedition was created with the intentions of invading Mexico through the city of Matamoros; however, the plan was never executed due to political turmoil in the Texas government. Some relief came over the next few months with the arrivals of Colonel Jim Bowie, Colonel William B. Travis, and David Crockett; each bringing 12–30 additional men. Rumors of the approaching Mexican army of nearly 2,000 men soon followed (Hatch 1999).

General Santa Anna arrived in San Antonio with between 1,800 and 2,100 men on February 23, 1836. Upon their arrival Colonel Travis ordered his men to retreat into the Alamo (Hatch 1999). General Santa Anna raised a red flag signifying “no quarter–no mercy” and received a cannon shot from the Texians in defiance (Hatch 1999:20). Another defiant cannon is rumored to have been shot in response to a request for an unconditional surrender. In a letter sent February 24, 1836 addressed to the “People of Texas and all Americans in the World,” Colonel Travis pleads for assistance and states “if this call is neglected, I am determined to sustain myself as long as possible & die like a soldier who never forgets what is due his own honor & that of his country. Victory or Death” (Groneman 2001:6).

Over the next few days the Alamo defenders suffered shortages of provisions and water, constant bombardment on the Alamo and psychological warfare through the nights ordered by General Santa Anna. On the third day of the siege, Mexican troops created a diversion at the Alamo’s main gate in an attempt to cross the San Antonio River and reach the south wall of the Alamo through La Villita. The Texians repelled both attacks and subsequently burned buildings in close proximity to the Alamo to deny shelter for Santa Anna’s men in La Villita (Hatch 1999). General Santa Anna ordered many small attacks in an attempt to breach the Alamo’s walls. Many Mexicans lost their lives in the process; however, no Texians were killed in the 12-day siege before the final battle (Hatch 1999; Huffines 1999).

On March 4, 1836 General Santa Anna held a Council of War to decide plans of attack and the fate of prisoners. The final decision to attack the Alamo with full force was made the following day, March 5, 1836 (Hatch 1999). The Mexican army moved into position just after midnight on March 6, 1836 and waited for the signal to attack. This call came around five o’clock in the morning when a soldier cried out “Viva Santa Anna!” (Huffines 1999:134). With the element of surprise lost, Santa Anna ordered his troops to begin the attack on the Alamo garrison (Huffines 1999).
The vicious battle, lasting only 90 minutes, left every Texian combatant dead. The number of Mexican dead is a matter of debate, with numbers ranging from 100–1,600; uncounted more were wounded. The Texian’s bodies were burned on funeral pyres on either side of the Alameda. Santa Anna won the battle at the Alamo but victory and independence was won by the Texans two weeks later in the Battle of San Jacinto (Hatch 1999; Huffines 1999).

After Mexican forces were removed from San Antonio in December of 1836, the Republic of Texas began organizing Bexar County. The next month, San Antonio was chartered as the county seat. Despite these progressions, many conflicts continued to occur in San Antonio including the Council House Fight of 1840 and two Mexican invasions in 1842 (Fehrenbach 2005).

1848 TO 1900

After Texas entered the Union in 1845, San Antonio’s already diverse population grew dramatically. The Irish came to Texas in the late 1830s to early 1840s and established Irish Flat. Germans settled in San Antonio in the 1850s introducing the “Bier Halle” to the area. French immigrants added artists and artisans to the culture of the city. Later immigrants to the area included Polish, Italians, Greeks, Syrians, and in 1910 Chinese, all of which formed small communities within the City of San Antonio.

Culture and architecture from each immigrant community have seeped into San Antonio and merged together, forming a rich cultural community. This diverse culture is evident as you observe historic missions and Victorian mansions built next to modern offices and homes (Fehrenbach 2005).

On March 2, 1861 Texas seceded from the Union and soon after the Civil War began. San Antonio was a Confederate storage area as well as a location to form military units; however, the city kept its distance from most of the fighting (Fehrenbach 2005).

After the Civil War, industries such as cattle, distribution, ranching, mercantile, gas and oil, and military centers in San Antonio prospered. The arrival of a railway transportation system in San Antonio in 1877 inspired economic growth throughout the city (Fehrenbach 2005; House 1949). Modernization increased dramatically between the 1880s and the 1890s, compared to the rest of the United States. Civic government, utilities, electric lights and street railways, street paving and maintenance, water supply, telephones, hospitals, and a power plant were all established or planned around this time (Fehrenbach 2005).

1900 TO 1950

In 1921, a disastrous flood engulfed Houston and St. Mary’s Street with approximately 9 feet of water. The Olmos Dam was built in response to this event to prevent further flooding, as well as the straightening and widening of sections of the San Antonio River. Another recommendation was to construct an underground channel in downtown San Antonio and covering portions of the river with concrete. This last idea upset many people, but eventually the compromise was reached in creating a Riverwalk with shops and restaurants. Construction of this Riverwalk was completed in 1941 (Long 2008).

As the United States entered into World War II, San Antonio became an important military center and other city activities and construction ceased for nearly five years. Fort Sam Houston, Kelly, Randolph, Brooks and Lackland air force bases are all active military training centers today (Heusinger 1951).
Tourism is one of the San Antonio’s most important industries drawing tens of thousands of visitors every year. More recent features include theme parks, zoos, museums, gardens, parks, and sporting attractions. The Riverwalk, also known as the Paseo del Rio, consists of over 2.5 miles of shops and restaurants as well as a boat ride along the channel. This is probably one of San Antonio’s most visited attractions.

San Antonio Missions National Historical Park includes The Alamo (1718), Mission Concepción (1731), Mission San José (1720), Mission San Juan Capistrano (1731), and Mission San Francisco de la Espada (1741). San Fernando Cathedral (1758), the Spanish Governor's Palace (1749), the Quadrangle at Fort Sam Houston (1878), and the Bexar County Courthouse (1891) are visited due to their interesting architecture.

METHODS

BACKGROUND REVIEW

SWCA conducted a thorough background cultural resources and environmental literature search of the project area. An SWCA archaeologist reviewed the San Antonio East U.S. Geological Survey (USGS) 7.5-minute topographic quadrangle maps at the Texas Archeological Research Laboratory (TARL) and searched the Texas Historical Commission’s (THC) Texas Archeological Sites Atlas (Atlas) online database and the Texas Department of Transportation (TxDOT) Historic Overlay maps for any previously recorded surveys and historic or prehistoric archaeological sites located in or near the project area. In addition to identifying recorded archaeological sites, the review included information on the following types of cultural resources: National Register of Hisstoric Places (NRHP) properties, SALs, Official Texas Historical Markers (OTHM), Registered Texas Historic Landmarks (RTHL), cemeteries, and local neighborhood surveys. The archaeologist also examined the Soil Survey of Bexar County, Texas (Taylor et al. 1991) and the Geologic Atlas of Texas, San Antonio Sheet (Barnes 1982). Aerial photographs were reviewed to assist in identifying any disturbances.

FIELD METHODS

SWCA’s investigations consisted of an intensive pedestrian survey with subsurface investigations within the project area. Archaeologists examined the ground surface and erosional profiles and exposures for cultural resources. Subsurface investigations involved shovel testing and backhoe trenching in settings with the potential to contain buried cultural materials. In uplands, the shovel tests were approximately 30 cm in diameter and excavated to culturally sterile deposits or impassible basal clay, whichever came first. The matrix from each shovel test was screened through ¼-inch mesh, and the location of each excavation was plotted using a hand-held global positioning system (GPS) receiver. Each shovel test was recorded on a standardized form to document the excavations. Shovel tests were excavated according to THC standards, one shovel test for every 3 acres for projects over 100 acres in size.

As the project area encompasses a topographic setting (i.e., Salado Creek) that has the potential for deeply buried archaeological sites, investigation methods had to be undertaken to reach these deposits. The primary method for quickly and efficiently exploring such areas is mechanical trenching. In the northern portion, backhoe trenches were utilized to investigate the areas containing deeper deposits particularly along Salado Creek drainage. Generally, the trench investigations were placed approx-
Trench placement was based on the location of buried utilities, the location of any impacted areas, and the preservation potential for archaeological sites. Backhoe trenches were excavated to a depth sufficient to determine the presence/absence of buried cultural materials and allow the complete recording of all features and geomorphic information to depths of project impacts. Generally, trenches were 1.5 m deep, 6–8 m long, and 1.5 m wide. All trenching was monitored by an experienced archaeologist while excavations were underway. Stratigraphic soils descriptions were recorded and photo-documented for each trench by an experienced archaeologist.

Safety is always a primary concern of SWCA when conducting trenching, particularly in deep deposits. All work was performed in accordance with Occupational Safety and Health Administration (OSHA) (29 CFR Part 1926) and the Texas Trench Safety Act (H. B. 1569). Appropriate measures were taken for any trenches that exceeded 2 m in depth, utilizing shoring or the stepping back of sidewalls to ensure that all OSHA protocols are followed. The entire process was thoroughly photographed. All trenches were backfilled and leveled upon completion of excavation and recording.

Archaeological trenching was not performed in the southern portion of the project area based upon current design specifications communicated to SWCA. As noted above, current design plans for this area indicate that only a small administration building, surface parking, soccer fields, and a walking track. Only existing infrastructure such as buried utility and water lines will be utilized. As a result depth of impact in this area is expected not to exceed 2–3 feet precluding the need for deep archaeological excavations. Based upon these design specifications only shovel tests were excavated in the southern project area.

RESULTS

BACKGROUND REVIEW

A small portion of the APE has been previously surveyed (Figure 5). SWCA completed a survey and monitoring of a water recycling pipeline in 1999 (TAC Permit 1913) (Miller et al. 1999). The project installed a pipeline through the northern survey area leaving an approximately 60-foot-wide cleared easement (see Figure 5). The previous investigations of the pipeline utilized five backhoe trenches to evaluate the T-2 terrace of Salado Creek situated about 270 m to the south (see Figure 5). The results of these investigations will be discussed further below. In the interim, excavations did not identify any cultural resources within the project area.

In 2004, a 360-m section of the northern area and a 700-m section of the southern area along Salado Creek was surveyed as part of the proposed Salado Creek Hike and Bike Trail (TAC Permit 2917). No archaeological sites were defined within the current project area by this survey. Additionally, an approximately 7-acre area in the south-central portion of the northern area was surveyed in 2008 for proposed sanitary sewer outfall siphons (TAC Permit 4730). The results of this survey were also negative for any cultural resources within the current project area.

Within a 1-km radius of the project area there are three previously recorded archaeological sites (41BX1678, 41BX1832, and 41BX1832). Site 41BX1678 is located approximately 860 m northwest of the project area and is described as a very sparse surface and subsurface scatter of prehistoric material located during the Salado Creek Hike and Bike Trail survey. According to available site
Figure 5. Previous archaeological surveys
forms no further work was recommended for site 41BX1678. Site 41BX1832 is approx-
imately 540 m east of the project area near the intersection of then north bound lane of IH 10 and Salado Creek. The site is described as a historic occupational site associated with the Alsbury Family. Recorded in 2009, the site contains a possible buried pier foundation, fragments of historic ceramics, and glass. Site forms indicate that the site was recommended as eligible for listing the NRHP; however, the final report is not on file with the THC. Site 41BX1833 is located approximately 670 m east of the project area at the intersection of the south bound lane of IH 10 and Salado Creek. The site, recorded in 2009, is described as a lithic scatter on surface with an intact buried midden and pit feature. According to site forms on file with TARL, the site was recommended for avoidance or further work, however, the final report is not on file with the THC.

CHAIN-OF-TITLE SEARCH

The early nineteenth century ownership of the project area has been well documented by Iruegas et al. (2009) and is briefly summarized below. The early history of the area is associated with the Alsbury family, whose farmstead, also documented by Iruegas et al. (2009), is located immediately to the west of the project area. The land was initially granted to Andres Benito Courbière and his wife in 1807 and occupied by his descendants. Despite the claim to the land by the Courbière family, it appears that ownership claims granted by the Spanish and Mexican government was never validated by the Republic of Texas government. Subsequently title to the land was given to Guillerma Nunez in 1833 (Texas General Land Office [GLO] Abstract 548).

Nunez believed that his claim to the land was valid and in 1847 sold the property to George W. Paschal in 1847 for $400. Iruegas et al. (2009:23) noted that at this same time, the Courbière family requested a survey of the same land in anticipation of giving the land to Young Perry Asbury. From this point, a series of court disputes and claims to true ownership of that land continued back and forth between Alsbury and Paschal including requests for damages to the property from felling timber.

Iruegas et al. (2009:32) noted that the court case was finally resolved in favor of Paschal in 1873. He also noted that despite the dispute between the two families the Alsbury continued to live on the land. Further research by SWCA into deed transactions on file with the Bexar County Clerks Office yielded a deed dated 1847 between Hanson Alsberry, brother of Young Perry Alsbury, selling property on “…the water of Salado Creek” for the sum of $750 (Book G1, page 348). This transaction may account for why the Alsbury’s were allowed to live and even be buried on the land. The dispute between the two families was over land just to the east and likely was used exclusively for agriculture.

Whilst the legal ranglings between Alsbury and Paschal were happening, the land along Salado Creek was sold by Paschal to James McCormick in 1851 and by McCormick to John Sheahan later that same year. The next year Sheahan sold the property to J. S. McLellan. He retained the land until 1860 whereupon he sold to W. Ewing. At this point in time there are no available property records that detail any transaction involving the property.

The next recorded transaction was between the Ewing Company and C. L. Browning in 1948. The Ewing Company was a trust that held the land for members of the Ewing family. It is likely that the land remained within the Ewing family since its acquisition in 1860 and thus accounts for the lack of deed transactions. The Browning family retained the prop-
property until its recent purchase by the City of San Antonio.

Court Records Search

A request for any court records associated with the project area was filed with the Bexar County Archives on July 2, 2010. SWCA is presently awaiting a response to this request.

Historic Aerial and Map Analysis

Historic aerals dating from 1938 to 2008 were reviewed for evidence of historic age structures or features in the 150 acres. The earliest image from 1938 depicts the project area as mostly vegetated in the north and partially cleared for agriculture in the south (Figure 6). There are no visible structures within the project area.

By 1959, the project area has seen substantial change. In the northern portion, a baseball diamond is clearly visible to the northeast. In addition, a large cleared area has been created along the northern boundary. To the south, the landscape has been transformed into a suburban environment, with numerous houses and a gridded street system (Figure 7). By 1966, the suburban neighborhood has expanded in the south and an additional baseball diamond has been added in the north (Figure 8).

Between 1977, the project area begins to change somewhat. Heavy forestation takes over the northern portion and the baseball diamonds are no longer visible. However, additional baseball fields with associated roads and parking have been added along the western margins of the northern survey area (Figure 9). By 1985, an apparent drainage canal has been constructed along the eastern margins of the northern survey area while a larger bridge and frontage road has been placed over the Salado Creek in the southern survey area (Figure 10). By 2004, the neighborhood that had sprung up in the south now begins to shrink; no homes are visible in the most recent aerial (Figure 11).

Historic maps dating from 1845–1953 were similarly examined for historic age structures or features within the project area. The project generally remains in an agricultural setting devoid of any structures until 1927 (Figure 12). At this time, two structures are visible in the southern portion of the project area. By 1953, the neighborhood which appears on the 1959 aerial photograph is depicted. However, the baseball diamond visible on the aerial is not represented (Figure 13).

Historic Roads, Caminos, and Water Crossings

Of importance to the review of historic maps and aerals was the identification of any historic roads or caminos that may have passed through or adjacent to the project area. Historic maps from 1845, 1850, and 1871 do not indicate that the project area was along any of the known historic trails that led into San Antonio. A review of McGraw et al. (1991) similarly did not indicate the presence of any historic roads through the project area. The nearest historic road is that of the Gonzalez Road, which crosses Salado Creek near Rigsby Road, approximately 0.5 mile to the south.

On all the available historic aerals a crossing of Salado Creek is visible between the northern and southern sections. The crossing point remains constant, although the resulting access and egress roads begin to fade by the late 1970s (see Figures 6-11). On the 1871 GLO map of Bexar County, the general vicinity of the project area is labeled *Paso Hondo* or Deep Pass (Figure 14) A review of McGraw et al. (1991) did not produce any information regarding this pass and it likely represents a minor crossing of creek.
Figure 6. 1938 aerial of project area
Figure 7. 1959 aerial of project area
Figure 8. 1966 aerial of project area
Figure 9. 1977 aerial of project area
Figure 10. 1985 aerial of project area
Figure 11. 1995 aerial of project area
Figure 12. East San Antonio USACE map (1927)

Background: East San Antonio USACE map (1927)
SWCA PN. 16418, Production: July, 2010, CTH

Project Area
Figure 13. San Antonio East USGS map (1953)
Figure 14. 1871 GLO map of Bexar County
STEPHEN F. AUSTIN’S CAMP AT SALADO CREEK

Of additional concern to the San Antonio Historic Preservation Office was the proximity of the project area to the historic location of Stephen F. Austin’s Camp on Salado Creek. A historic marker, near the present intersection of Rigsby Road and Salado Creek demarks the camp location. This marker is on the opposite side of Salado Creek and nearly 0.5 mile from the project area to the south.

FIELD SURVEY

On July 12 and 13, and July 19, 2010 SWCA archaeologists conducted an intensive pedestrian survey with shovel testing and backhoe trenching of the proposed Wheatley Heights Sports Complex. The project area is dominated by very dense stands of vegetation throughout the northern and southern sections. Evidence of extensive subsurface disturbances was noted throughout the entire project area.

PEDESTRIAN SURVEY AND SHOVEL TESTING

In the northern portion of the project area, two abandoned baseball diamonds were noted approximately 500 m northwest of the intersection of IH 10 and Salado Creek. These two diamonds are not in the same locations as those noted in the 1966 aerial (Figure 15). Additionally, a 500-m-long pipeline right-of-way (ROW) has been cut through the central portion of the northern area, of which a large area has been paved where the pipeline crosses Salado Creek (see Miller et al. 1999) (Figure 16). In the northwestern corner, abandoned sections of paved roadway were noted paralleling a recently constructed concrete drainage canal.

To the south vegetation was equally dense and subsurface disturbances are even more extensive (Figure 17). As noted in the historic aerial and map review, a neighborhood began to develop in the area in the early-1960s. However, by the turn of the twenty first century, this neighborhood is no longer extant, having been bulldozed. The remnants of these houses are evident throughout the southern portion of the project area. Concrete foundation pads, building materials, and other modern debris were observed pushed into piles amongst the thick vegetation (Figure 18). Utility lines, including open manholes and abandoned fire hydrants were noted, further suggesting that large sections of the southern area have been excavated and bulldozed within the past 40 years (Figures 19 and 20). Furthermore, a large scatter of modern and mid-twentieth century trash including bottles, vinyl records, aluminum cans, and plastic bottles are strewn across much of the southern area and in some cases recent bulldozing activity has formed debris push piles.

For projects of 100 acres or larger, the THC and Council for Texas Archaeologists (CTA) survey standards require a minimum of 3 shovel test per acre. SWCA met the survey standards and excavated a total of 50 shovel tests within the 150-acre project area, or approximately 1 shovel tests per acre (Figure 21, Tables 1 and 2). In general, shovel tests encountered loamy clay to silty clay that ranged in color from reddish-brown to very dark grayish-brown. In some areas, particularly in the southern portion of the APE, soils were heavily mottled and intermixed with modern debris to a depth of 30 cm below surface (cmbs) or below, indicating extensive subsurface disturbance.

As noted on the historic aerials and the 1871 GLO map, a crossing, Paseo Hondo, of Salado Creek connects the northern and southern portions of the project area. The crossing is currently a small bridge which was likely constructed to access the nearby baseball diamonds (Figure 22). No evidence of any
Figure 15. One of two abandoned baseball diamonds in the northern portion of the project area, facing east.

Figure 16. Water recycling pipeline corridor in central portion of the project area; note paved road section in background, facing north.
Figure 17. Dense vegetation within project area, facing east.

Figure 18. Concrete pads and road sections piled up in the southern section of the project area, facing north.
Figure 19. Abandoned sewer line in the southern portion of the project area.

Figure 20. Abandoned fire hydrant in southern portion of the project area, facing northeast.
Figure 21. Survey Results Map.

Background: USGS San Antonio East Quadrangle.
SWCA PN. 16418, Production: July, 2010, CAC.
<table>
<thead>
<tr>
<th>ST# Level</th>
<th>Depth (cmbs)</th>
<th>Munsell</th>
<th>Soil Color</th>
<th>Soil Texture</th>
<th>Inclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-25</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Silt Loam</td>
<td>Rootlets</td>
<td>Near residential area; west of Salado Creek. 20% GSV; friable and subangular; encountered flat, clear glass at 10 cmbs and one whiteware ceramic at 15 cmbs.</td>
</tr>
<tr>
<td>2</td>
<td>25-50+</td>
<td>10 YR 5/4</td>
<td>Yellowish-Brown</td>
<td>Silty Clay Loam</td>
<td>Limestone gravels</td>
<td>No cultural materials encountered; compact soil with increasing limestone gravels (5%); friable and subangular; 10% calcium carbonate and 2% rabdotus; termination due to compact soils.</td>
</tr>
<tr>
<td>1</td>
<td>0-60</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Silt Loam</td>
<td>Mottled tan clay pockets</td>
<td>ST is disturbed throughout; contains asphalt, carpet, and clear glass fragments; soil is friable and heavily mottled.</td>
</tr>
<tr>
<td>2</td>
<td>30-60+</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown</td>
<td>Clay Loam</td>
<td>Rabdotus and rootlets</td>
<td>Clay is friable, firm, and sticky; contains rabdotus and rootlets.</td>
</tr>
<tr>
<td>1</td>
<td>0-10</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Silt Loam</td>
<td>Mottled</td>
<td>Soil is friable and mottled; contains red brick and green ceramic sherd of recent age.</td>
</tr>
<tr>
<td>2</td>
<td>10-40+</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown</td>
<td>Clay Loam</td>
<td>Rabdotus and rootlets</td>
<td>Similar to K3; contains amber light tousing and electrical porcelain insulator.</td>
</tr>
<tr>
<td>1</td>
<td>0-40</td>
<td>10 YR 5/3</td>
<td>Brown</td>
<td>Silt Loam</td>
<td>Roots and rabdotus</td>
<td>South of bridge and west of creek; soils are friable and subangular blocky.</td>
</tr>
<tr>
<td>2</td>
<td>40-60</td>
<td>10 YR 5/3</td>
<td>Brown</td>
<td>Clay Loam</td>
<td>Roots</td>
<td>Soils are friable and firm; clay content increases with depth; termination due to tree roots.</td>
</tr>
<tr>
<td>1</td>
<td>0-10</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
<td>Rootlets</td>
<td>Humate layer.</td>
</tr>
<tr>
<td>2</td>
<td>0-25</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Loam to Clay Loam</td>
<td>Rootlets</td>
<td>Soil disturbed throughout; contains asphalt, carpet, and clear glass fragments; soil is friable and heavily mottled.</td>
</tr>
<tr>
<td>1</td>
<td>0-5</td>
<td>n/a</td>
<td>Gravels</td>
<td>Roots</td>
<td>Limestone gravels</td>
<td>10 m north of K1; composed of all limestone gravels; impassible.</td>
</tr>
<tr>
<td>2</td>
<td>0-25</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Silt Loam</td>
<td>Gravels and cobbles</td>
<td>Located on edge of creek; termination due to compact soils.</td>
</tr>
<tr>
<td>1</td>
<td>0-30</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
<td>Gravels</td>
<td>Located on edge of creek near crossing; termination due to compact soils.</td>
</tr>
<tr>
<td>2</td>
<td>0-50+</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
<td>Gravels</td>
<td>Within wooded area; termination due to compact soils.</td>
</tr>
<tr>
<td>1</td>
<td>0-10</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
<td>Rootlets</td>
<td>Within wooded area; termination due to compact soils.</td>
</tr>
<tr>
<td>2</td>
<td>0-40+</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
<td>Gravels and cobbles</td>
<td>Many gravels to cobble size inclusions; termination due to compact soils.</td>
</tr>
<tr>
<td>1</td>
<td>0-10</td>
<td>7.5 YR 6/4</td>
<td>Light Brown</td>
<td>Gravelly</td>
<td>Manganese Gravels</td>
<td>Within relatively open area; manganese gravels at 50%; termination due to compact soils.</td>
</tr>
<tr>
<td>2</td>
<td>0-20</td>
<td>7.5 YR 6/4</td>
<td>Light Brown</td>
<td>Gravelly</td>
<td>Manganese Gravels</td>
<td>Within relatively open area; manganese gravels at 50%; termination due to compact soils.</td>
</tr>
<tr>
<td>1</td>
<td>0-20</td>
<td>7.5 YR 6/4</td>
<td>Light Brown</td>
<td>Silt Loam</td>
<td>Gravels and cobbles</td>
<td>Many gravels to cobble size inclusions; termination due to compact soils.</td>
</tr>
<tr>
<td>2</td>
<td>0-30</td>
<td>7.5 YR 6/4</td>
<td>Light Brown</td>
<td>Silt Loam</td>
<td>Gravels</td>
<td>Termination due to compact soils.</td>
</tr>
<tr>
<td>1</td>
<td>0-40</td>
<td>7.5 YR 6/4</td>
<td>Reddish-Brown</td>
<td>Clay Loam</td>
<td>Rootlets</td>
<td>Located at edge of road; termination due to compact soils.</td>
</tr>
<tr>
<td>2</td>
<td>0-20</td>
<td>7.5 YR 6/4</td>
<td>Reddish-Brown</td>
<td>Clay Loam</td>
<td>Rootlets</td>
<td>Area appears disturbed; heavy vegetation; termination due to disturbance.</td>
</tr>
<tr>
<td>1</td>
<td>0-20</td>
<td>7.5 YR 6/4</td>
<td>Reddish-Brown</td>
<td>Clay Loam</td>
<td>Rootlets</td>
<td>Area appears disturbed; heavy vegetation; termination due to compact soils.</td>
</tr>
<tr>
<td>20</td>
<td>0-20</td>
<td>7.5 YR 6/4</td>
<td>Reddish-Brown</td>
<td>Clay Loam</td>
<td>Rootlets</td>
<td>Area appears disturbed; heavy vegetation; termination due to compact soils.</td>
</tr>
<tr>
<td>ST#</td>
<td>Level</td>
<td>Depth (cmbs)</td>
<td>Munsell Soil Color</td>
<td>Soil Texture</td>
<td>Inclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>C21</td>
<td>1</td>
<td>0-30</td>
<td>5 YR 4/3</td>
<td>Reddish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>Areal appears disturbed; heavy vegetation; termination due to compact soils.</td>
</tr>
<tr>
<td>C22</td>
<td>1</td>
<td>0-30</td>
<td>5 YR 4/3</td>
<td>Reddish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>Areal appears disturbed; heavy vegetation; termination due to compact soils.</td>
</tr>
<tr>
<td>C23</td>
<td>1</td>
<td>0-30</td>
<td>5 YR 4/3</td>
<td>Reddish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>Areal appears disturbed; heavy vegetation; termination due to compact soils.</td>
</tr>
<tr>
<td>C24</td>
<td>1</td>
<td>0-30</td>
<td>5 YR 4/3</td>
<td>Reddish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>Areal appears disturbed; heavy vegetation; termination due to compact soils.</td>
</tr>
<tr>
<td>J2</td>
<td>1</td>
<td>0-15</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown Clay Loam</td>
<td>Roots</td>
<td>Mature hardwoods of elm and oak; sparse grasses; compact at 10 cmbs; some snail shell.</td>
</tr>
<tr>
<td>J3</td>
<td>1</td>
<td>0-25</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>Similar setting to J2; near dry drainage; some snail shell; three small (<2 cm) chert and quartzite pebbles; termination due to basal clay.</td>
</tr>
<tr>
<td>J4</td>
<td>1</td>
<td>0-15</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>More brush and younger trees; hackberry and some poison ivy; near modern trash dumpings; matrix similar to J2; termination due to basal clay.</td>
</tr>
<tr>
<td>J5</td>
<td>1</td>
<td>0-7</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown Clay Loam</td>
<td>Rabdotus</td>
<td>Thick ground cover; thin clay over blocky, well-formed clay; termination due to basal clay.</td>
</tr>
<tr>
<td>J6</td>
<td>1</td>
<td>0-3</td>
<td>10 YR 5/4</td>
<td>Yellowish-Brown Silt</td>
<td>Gravels</td>
<td>Very thick sunflower-like plants that have been cleared in the past; caliche at surface; termination due to bedrock.</td>
</tr>
<tr>
<td>J7</td>
<td>1</td>
<td>0-7</td>
<td>10 YR 4/3</td>
<td>Brown Clay Loam</td>
<td>Gravels</td>
<td>Thick woods in higher terrain; 30-40% gravels increasing with depth; termination due to bedrock.</td>
</tr>
<tr>
<td>J8</td>
<td>1</td>
<td>0-3</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown Clay Loam</td>
<td>Gravels</td>
<td>North edge of APE near spoil pile; caliche; termination due to bedrock.</td>
</tr>
<tr>
<td>J9</td>
<td>1</td>
<td>0-3</td>
<td>10 YR 4/3</td>
<td>Brown Clay Loam</td>
<td>Gravels</td>
<td>100 m south of uplands; abundance of surface gravels; termination due to bedrock.</td>
</tr>
<tr>
<td>J10</td>
<td>1</td>
<td>0-15</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>Similar to J4; southwest part of north section; modern trash in the area; no gravels; termination due to basal clay.</td>
</tr>
<tr>
<td>J11</td>
<td>1</td>
<td>0-12</td>
<td>10 YR 4/3</td>
<td>Brown Silty Clay Loam</td>
<td>Snail Shell</td>
<td>Edge of residential area, near road, in tree stand; few land snails; no gravels.</td>
</tr>
<tr>
<td>J12</td>
<td>2</td>
<td>12-30</td>
<td>10 YR 3/3</td>
<td>Dark Brown Clay Loam</td>
<td>CaCO3</td>
<td>Calcium carbonate flecking and coarse-grained inclusions; no gravels; calcium carbonate and clay content increase with depth; termination due to compact soils.</td>
</tr>
<tr>
<td>J13</td>
<td>1</td>
<td>0-25</td>
<td>10 YR 4/3</td>
<td>Brown Silty Clay Loam</td>
<td>Mottling and imported gravels</td>
<td>Upper 6-8 cmbs has extensive modern disturbances; four wire nails and roofing tack between 20-25 cmbs.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25-30</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish-Brown Clay Loam</td>
<td>Rootlets</td>
<td>Clay is thick, dense, and calcareous; termination due to compact soils.</td>
</tr>
<tr>
<td>J14</td>
<td>1</td>
<td>0-20</td>
<td>10 YR 4/3</td>
<td>Brown Clay Loam</td>
<td>Roots and trash</td>
<td>Near creek, road, and abandoned domestic residence; associated material on surface and in matrix; becomes impassible due to roots and modern trash.</td>
</tr>
<tr>
<td>J15</td>
<td>1</td>
<td>0-10</td>
<td>10 YR 4/3</td>
<td>Brown Clay Loam</td>
<td>Gravels</td>
<td>Near road and pecan trees; some gravels; termination due to compact soils.</td>
</tr>
<tr>
<td>J16</td>
<td>1</td>
<td>0-20</td>
<td>10 YR 4/3</td>
<td>Brown Silty Clay Loam</td>
<td>Roots</td>
<td>Abundance of modern debris on surface, but none subsurface; overgrown with large trees and hackberry.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20-32</td>
<td>10 YR 4/3</td>
<td>Brown Clay Loam</td>
<td>Rootlets</td>
<td>Clay becomes blocky and increases with depth; termination due to compact soils.</td>
</tr>
<tr>
<td>J17</td>
<td>1</td>
<td>0-35</td>
<td>10 YR 4/3</td>
<td>Brown Clay Loam</td>
<td>Modern debris</td>
<td>Possibly within floodplain due to high water marks; light modern trash scatter on surface; vinyl LP at 20 cmbs and wire at 25 cmbs.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35-40</td>
<td>10 YR 4/3</td>
<td>Brown Clay Loam</td>
<td>Rootlets</td>
<td>Thick, sticky clay; calcareous; termination due to compact soils.</td>
</tr>
<tr>
<td>J18</td>
<td>1</td>
<td>0-35</td>
<td>10 YR 4/2</td>
<td>Dark Grayish-Brown Clay Loam</td>
<td>Gravels</td>
<td>10 m south of K1; large fill gravels; no cultural material; end at intensely compact, mottled (10 YR 5/4) calcareous soil.</td>
</tr>
</tbody>
</table>
Table 2. Wheatley Heights Sports Park BHT Results

<table>
<thead>
<tr>
<th>BHT #</th>
<th>BHT Location</th>
<th>BHT Length</th>
<th>Depth</th>
<th>Color</th>
<th>Soil Texture Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>West of ball diamonds and north of Salado Creek</td>
<td>6 m</td>
<td>1</td>
<td>Very Dark Grayish Brown</td>
<td>Loam to Clay Loam</td>
<td>Soils are friable with roots and a lot of vertical cracks. Inclusions include white pebbles and approximately 5% shell fragments. Lower boundary is gradual and smooth. One Miracle Whip jar lid recovered.</td>
</tr>
<tr>
<td>2</td>
<td>South of diamonds and north of Salado Creek</td>
<td>6 m</td>
<td>1</td>
<td>Very Dark Grayish Brown</td>
<td>Loam to Clay Loam</td>
<td>Soils are friable containing insect casts, 5% calcium carbonate specks, and roots. Almost prismatic structure with scattered sub-angular gravels (1%). Lower boundary is clear and smooth with cluster of gravels at base of horizon.</td>
</tr>
<tr>
<td>3</td>
<td>East of main road, roughly 150 m east of BHT 2</td>
<td>6 m</td>
<td>1</td>
<td>Very Dark Grayish Brown</td>
<td>Silty Clay Loam</td>
<td>Soils are friable, sub-angular blocky. Calcium carbonate inclusions at 10% and increasing with depth. Horizon becomes lighter in color at 145 cmbs. Weak lower boundary. Few rootlets and some snail shell (3%). One sub rounded gravel.</td>
</tr>
</tbody>
</table>

BHT Location:
- **BHT 1:** West of ball diamonds and north of Salado Creek
- **BHT 2:** South of diamonds and north of Salado Creek
- **BHT 3:** East of main road, roughly 150 m east of BHT 2
- **BHT 4:** East end of project area northwest of Salado Creek
<table>
<thead>
<tr>
<th>BHT #</th>
<th>BHT Location</th>
<th>BHT Length</th>
<th>Depth (cmbs)</th>
<th>Color</th>
<th>Soil Texture Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>South of BHT 4 and north of Salado Creek</td>
<td>6 m</td>
<td>1 0-20</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 20-71</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Silt Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 71-135</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td>6</td>
<td>North end of project area</td>
<td>6 m</td>
<td>1 0-110</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Construction Fill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 110+</td>
<td>10 YR 7/1</td>
<td>Light Gray</td>
<td>Cobbles and CaCO3</td>
</tr>
<tr>
<td>7</td>
<td>North end of project area</td>
<td>6 m</td>
<td>1 0-50</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 50-130</td>
<td>10 YR 4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 130-150+</td>
<td>10 YR 7/1</td>
<td>Light Gray</td>
<td>Cobbles and CaCO3</td>
</tr>
<tr>
<td>8</td>
<td>West of ball diamonds and north of Salado Creek</td>
<td>6 m</td>
<td>1 0-10</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish Brown</td>
<td>Silty Clay to Silt Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 10-22</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 22-65</td>
<td>10YR4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 65-140+</td>
<td>10 YR 4/6</td>
<td>Dark Yellowish Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td>9</td>
<td>South of ball diamonds and north of Salado Creek; about 15 m from edge of T-1 terrace</td>
<td>6 m</td>
<td>1 0-10</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 10-46</td>
<td>10 YR 3/2</td>
<td>Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 46-58</td>
<td>10 YR 5/4</td>
<td>Yellowish Brown</td>
<td>Silt Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 58-94</td>
<td>10YR4/3</td>
<td>Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 94-150</td>
<td>10 YR 4/6</td>
<td>Dark Yellowish Brown</td>
<td>Silty Clay Loam</td>
</tr>
</tbody>
</table>
Table 2. Wheatley Heights Sports Park BHT Results

<table>
<thead>
<tr>
<th>BHT #</th>
<th>BHT Location</th>
<th>BHT Length</th>
<th>Depth</th>
<th>Color</th>
<th>Soil Texture Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Level/ Strat#</td>
<td>Depth (cmbs)</td>
<td>Munsell</td>
<td>Soil Color</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>6 m</td>
<td>1</td>
<td>0-12</td>
<td>10 YR 3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>12-66</td>
<td>10YR4/3 Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>66-110</td>
<td>10YR4/4 Dark Yellowish Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>110-160</td>
<td>10 YR 4/6 Dark Yellowish Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-7 m</td>
<td>1</td>
<td>0-35</td>
<td>10 YR 3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>35-60</td>
<td>10YR4/3 Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>60-84</td>
<td>10YR4/4 Dark Yellowish Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>84-150+</td>
<td>10 YR 4/6 Dark Yellowish Brown</td>
<td>Silty Clay Loam</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6 m</td>
<td>1</td>
<td>0-8</td>
<td>10 YR 3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>8-40</td>
<td>10 YR 3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>40-81</td>
<td>10YR4/3 Brown</td>
<td>Silt Loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>81-160+</td>
<td>10YR6/4 Light Yellowish Brown</td>
<td>Silt Loam</td>
</tr>
</tbody>
</table>
Figure 22. Low water crossing across Salado Creek, facing south.
historic age resources related to the crossing was visible. Additionally, a review of the historic deed information on file does not make mention of the pass.

A total of 22 shovel tests was excavated in the northern portion of the project area, all were negative for cultural material. In the southern section, 25 shovel tests were excavated. As noted above, soils within this area were heavily disturbed from bulldozing of houses and construction of supporting utility and roadway infrastructure.

A single shovel test, ST K-1, was positive for a historic sherd at approximately 30 cmbs in the northern margins of the southern survey area (Figure 23). The base fragment featured a maker’s mark identified as from the Salem China Co., Salem, Ohio. The mark is from china dinner ware made anytime from 1918–1967. The Salem factory produced pottery from 1898–1967 (Kovel 1986:127). Three additional shovel tests were excavated in a 10 m radius around ST K-1 and all three were negative for cultural material. Based upon the lack of additional cultural material and the wide date range of the identifying mark, no archaeological site was identified in the vicinity of ST K-1.

Backhoe Trenching

Twelve backhoe trenches were excavated in the northern portion of the project area (see Figure 21). The placement of the trenches was intended to supplement the shovel test excavations and evaluate the different settings within this section of the project area. Specifically, the northern project area appears to include the terrace deposits of Salado Creek and an upland. The terrace deposits consist of three recognized landforms (i.e., T-0 to T-2) that seemingly represent distinct periods of deposition of Salado Creek. The youngest is the T-0 deposits represented by the modern floodplain of the Salado Creek drainage (Figure 24). These deposits align the Salado Creek waterway and within the project area are roughly 8 m wide and about 40 cm thick. These deposits are seemingly modern in age and any cultural materials would likely be observed on the surface. No backhoe trenches were placed in the T-0 landform.

Rising about 1.5 m above the T-0 surface is the tread or surface of the T-1 landform. This landform appears to begin between the 590 and 600-foot elevation lines exhibited on the San Antonio East topographic quadrangle (see Figure 21). These deposits are the most extensive within the northern project area and are interpreted to have been deposited sometime during the Holocene. Nine backhoe trenches (i.e., Trenches 1–5 and 8–11) were utilized to investigate the T-1 setting (see Figure 21). These investigations encountered relatively consistent stratigraphy throughout the landform (see Table 2). All of the profiles exhibited a surface horizon about 6–10 cm thick primarily composed of humate material. The underlying second horizon ranges from 12–46 cm in thickness and is a very dark grayish-brown (10YR3/2) silty clay loam with abundant roots-rootlets, evidence of vertical cracking (shrink-swell), and a minor amount of prismatic structure terminating in a clear and smooth lower boundary. The third stratum typically begins at roughly 40 cmbs and is a brown (10YR4/3) clay loam and is similar in appearance to the overlying second stratum. In several trenches particularly in proximity to Salado Creek (i.e., Trenches 9 and 10), an anomalous lens of yellowish-brown (10YR5/4) silty clay loam is present that separates the second and third horizons. Due to the limited extent of the lens, it may represent a brief flood deposit occurring sometime in the Holocene. The final basal horizon observed on the T-1 landform typically begins about 90–100 cmbs and consists of a dark yellowish-brown to yellowish-brown
Figure 23. Salem Co. makers mark recovered from ST K-1.

Figure 24. Overview of Salado Creek on T-0 terrace near Trench 9 facing southeast; arrow indicates approximate surface of T-1 terrace on opposite bank.
(10YR4/6–5/4) silty clay loam with crumb structure, common CaCO₃ filaments (3–10 percent), snail and rhabdotus (2 percent), and infrequent, randomly scattered subrounded gravels (1 percent). Overall, none of the nine backhoe trenches (i.e., Trenches 1–5 and 8–11) on the T-1 landform contained cultural materials.

The T-2 terrace subtly rises above the T-1 landform and seemingly begins just below the 610-foot elevation line (see Figure 21). These deposits are interpreted to have been deposited sometime during the Holocene and possibly late Pleistocene (Miller et al. 1999). One backhoe trench (i.e., Trench 12) was excavated during the current investigations and compared to the five trenches previously excavated by SWCA archaeologists (see Figure 5) (Miller et al. 1999:21–23). The stratigraphy of Trench 12 is very similar to that characterized during the previous investigations. Trench 12 contains a surface horizon of humate materials and abundant roots to roughly 10 cmbs (see Table 2). The second horizon contains a very dark grayish-brown (10YR3/2) clay loam with a weakly developed subangular blocky structure that gradually transitions into the third horizon around 40 cmbs. The third horizon is a brown (10YR4/3) silt loam exhibiting a crumb structure with CaCO₃ filaments (10 percent), abundant vertical insect casts, and rare subrounded gravels that transition into the basal horizon at 81 cmbs. The fourth horizon consists of a light yellowish-brown (10YR6/4) silt loam exhibiting a crumb structure with CaCO₃ nodules (20 percent) ranging from 0.5–1.0 cm in diameter, abundant vertical roots, and occasional infilled rodent burrows. The fourth horizon was observed to extend to over 160 cmbs. Neither Trench 12 nor the five previously excavated backhoe trenches on the T-2 landform contained cultural materials.

The final setting within the northern project area consists of an upland (see Figure 21). The upland is exclusively situated at the northernmost portion of the northern area and roughly correlates to everything above the 610-foot elevation line. The proposed coliseum is indicated to be constructed on this landform, which will have the deepest APE (i.e., 5 feet). These upland soils are interpreted to have been deposited prior to the Late Pleistocene, which effectively would pre-date human occupation. As such, any cultural materials on the upland landform would likely be observed on the surface or shallowly buried. Two backhoe trenches (i.e., Trenches 6 and 7) were utilized to investigate the upland setting (see Figure 21). These investigations encountered a consistent stratigraphy containing extensive disturbance (see Table 2).

Although the depths and matrix differed between Trenches 6 and 7, both were severely disturbed. Trench 6 exhibited two horizons, the first extending to 110 cmbs is a brown (10YR4/3) clay loam containing large chunks of concrete and asphalt and other cultural debris (e.g., amorphous metal and plastic) representing construction fill (Figure 25). The bottom horizon begins with a disconformity and extends to over 150 cmbs composed of light gray (10YR7/1) silt matrix surrounding abundant limestone cobbles (80 percent). In contrast, Trench 7 exhibits a similar stratigraphy as Trench 6 except it is capped with a white (10YR8/1) fine sand-silt with subangular limestone gravels intermixed extending to 40 cmbs. A highly degraded vehicle muffler was encountered in the second horizon about 100 cmbs. The third horizon beginning about 130 cmbs is similar to light gray matrix supported limestone cobble horizon of Trench 6 (see Figure 25). Although cultural materials were observed in both Trenches 6 and 7, these materials were within construction fill, highly fragmented-crushed, and appeared to be recent in age. The entire upland setting appears to
Figure 25. Profile of Trench 6 facing south; arrow indicates asphalt chunks.
have been extensively reworked to a minimum depth of 130 cmbs.

Overall, the backhoe trench investigations of the Salado Creek terraces (i.e., T-1 and T-2) and upland did not encounter any cultural materials predating the modern era. The trench excavations did observe prevalent disturbance ranging from 20–130 cm in depth. Although there are subsurface portions of the northern project area that remain reasonably intact, no evidence of cultural materials or sites was encountered.

SUMMARY AND RECOMMENDATIONS

On behalf of the ECAG and the San Antonio Department of Parks and Recreation, SWCA conducted an intensive cultural resources survey of the 150-acre Wheatley Heights Sports Complex in San Antonio, Bexar County, Texas. The proposed project is slated to serve the local community as a sports and recreation center. Depths of impact are expected to range from 1–5 feet. Cultural resource investigations were conducted to satisfy the requirements of the Antiquities Code of Texas (Permit No. 5691). These investigations included a thorough background review and an intensive pedestrian survey with subsurface investigations.

The background review determined that a small portion of the southern section of the alignment has been previously surveyed and no previously recorded archaeological sites are located within or immediately adjacent to the project area. A review of available historic maps dating from 1938–2008 showed extensive use of the project area for agriculture, residential, and recreational purposes.

In all, 47 shovel tests were excavated within the 150-acre project area, only one was positive for cultural material. Soils consisted predominately of loamy clays and shovel tests were terminated at depths ranging from 10–60 cmbs due to the impenetrable substratum. For projects of this size, the THC and CTA survey standards require a minimum of three shovel tests per acre in projects areas exceeding 100 acres. SWCA exceeded the survey standards and excavated a total of 47 shovel tests and 12 backhoe trenches supplemented with five trenches from previous investigations within the 150-acre project area.

The intensive survey efforts within the 150-acre project area determined that much of the project area has been severely disturbed by continuous agricultural activities, successive episodes of construction and demolition of houses and supporting infrastructure. Disturbance is greatest in the southern portion of the project area where a large number of houses have been demolishing.

The intensive investigations on the Wheatley Heights Sports Complex project revealed no archaeological resources within the proposed APE. Accordingly, no cultural resources will be affected by any construction activities within the project area. Subsequently, SWCA recommends no further archaeological investigations within the project area. No artifacts were collected, thus nothing will be curated.
REFERENCES

Barnes, V. E.

Bever, M. R., and D. J. Meltzer

Black, S. L.

Black, S. L., and A. J. McGraw
1985 The Panther Springs Creek Site: Cultural Change and Continuity within the Upper Salado Creek Watershed, South-Central Texas. Archeological Survey Report No. 100. Center for Archaeological Research, The University of Texas at San Antonio.

Black, S. L., L. W. Ellis, D. G. Creel, and G. T. Goode

Bousman, C. B.

Bousman, C. B., B. W. Baker, and A. C. Kerr

Caldwell, L.

Collins, M. B.
1968 A Note on the Broad Corner-Notched Projectile Points Used In Bison Hunting in Western Texas. The Bull Roarer 3(2) 13-14. The University of Texas Anthropology Society, Department of Anthropology, The University of Texas at Austin.
1990 *The Archaeological Sequence at Kincaid Rockshelter, Uvalde County, Texas.* Transactions of the Twenty-Fifth Regional Archeological Symposium for Southeastern New Mexico and Western Texas, pp. 25–34.

Groneman, B. 2001 *Eyewitness to the Alamo.* Republic of Texas Press.

Hester, T. R.

Heusinger, E. W.

Huebner, J. A.

Huffines, A.

Houk, B., K. Miller, E. Oksanen et al.

House, B.

Iruegas, S., M. Tate-Iruegas, and V. Moore
2009 *Salado Creek Hike and Bike Trail IH-10 Alternative Alignment Project: An Intensive Archeological Survey, Bexar County, Texas*. GTI Environmental, Inc. Austin, Texas.

Jelks, E. B.
1962 *The Kyle Site: A Stratified Central Texas Aspect Site in Hill County, Texas*. Archaeology Series No. 5. Department of Anthropology, The University of Texas at Austin.

Johnson, L., Jr.

Johnson, L., Jr., D. A. Suhm, and C. D. Tunnell

Johnson, L., and G. T. Goode

Johnston, L. C.

Katz, P. R.
1987 *Archaeological Mitigation at 41BX300, Salado Creek Watershed, South-Central Texas*. Archaeological Survey Report No. 130. Center for Archaeological Research, The University of Texas at San Antonio.

Kelley, J. C., and T. N. Campbell

Kibler, K. W., and A. M. Scott
Kleinbach, K., G. Mehalchick, J. T. Abbott, and J. M. Quigg

Kovel, J. and T.

Long, C.

Lukowski, P. D.

Magruder, L.

Miller, K.A., C. Howell, and B. Young

McGraw, A. J., and K. Hindes
1987 Chipped Stone and Adobe: A Cultural Resources Assessment of the Proposed Applewhite Reservoir, Bexar County, Texas. Center for Archaeological Research, the University of Texas at San Antonio.

McGraw, A. J., J. W. Clark, Jr., and E. A. Robbins (editors)

McKinney, W. W.

Meltzer, D. J., and M. R. Bever

Oksanen, E.
2008 Archaeological investigations at the Icehouse site, 41HY161: a revaluation of early archaic technology, subsistence and settlement along the Balcones Escarpment and Central Texas. Master’s thesis, Texas State University, Department of Anthropology, San Marcos, Texas.

Prewitt, E. R.

Schoelwer, S. P.

Sorrow, W. M.
1969 Archeological Investigations at the John Ischy Site: A Burned Rock Midden in Williamson County, Texas. Papers of the Texas Archeological Salvage Project No. 18. The University of Texas at Austin.

Suhm, D. A.

Story, D. A.

Taylor, F. B., R. B. Hailey, and D. L. Richmond

Thoms, A. V., and R. D. Mandel, editors

1996 Early and Middle Holocene occupations at the Richard Beene site: the 1995 Southern Texas Archaeological Association field school project. La Tierra 32:4:8-36.

Thoms, A. V., and R. D. Mandel, editors

2007 Archaeological and Paleoecological Investigations at the Richard Beene Site, South-Central Texas. Reports of Investigation No. 8, Center for Ecological Archaeology, Texas A&M University, College Station.

Toomey R. S., III, M. D. Blum, and S. Valastro, Jr.

Wandsnider, L.

Weir, F. A.

Weston, J.
2004 The Perez Ranch Project: Reassessment of Four Archaeological Sites in South-Central Bexar County, Texas. UTSA-CAR. San Antonio, Texas.
Willey, G. R., and P. Phillips

Wilson, E. W.